![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmfisuppfi | Structured version Visualization version GIF version |
Description: The support of a function with a finite domain is always finite. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
fndmfisuppfi.f | β’ (π β πΉ Fn π·) |
fndmfisuppfi.d | β’ (π β π· β Fin) |
fndmfisuppfi.z | β’ (π β π β π) |
Ref | Expression |
---|---|
fndmfisuppfi | β’ (π β (πΉ supp π) β Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmfisuppfi.f | . . 3 β’ (π β πΉ Fn π·) | |
2 | dffn3 6729 | . . 3 β’ (πΉ Fn π· β πΉ:π·βΆran πΉ) | |
3 | 1, 2 | sylib 217 | . 2 β’ (π β πΉ:π·βΆran πΉ) |
4 | fndmfisuppfi.d | . 2 β’ (π β π· β Fin) | |
5 | fndmfisuppfi.z | . 2 β’ (π β π β π) | |
6 | 3, 4, 5 | fdmfisuppfi 9374 | 1 β’ (π β (πΉ supp π) β Fin) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2104 ran crn 5676 Fn wfn 6537 βΆwf 6538 (class class class)co 7411 supp csupp 8148 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-supp 8149 df-1o 8468 df-en 8942 df-fin 8945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |