MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fadd Structured version   Visualization version   GIF version

Theorem i1fadd 25653
Description: The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fadd (𝜑 → (𝐹f + 𝐺) ∈ dom ∫1)

Proof of Theorem i1fadd
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 11217 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
21adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
3 i1fadd.1 . . . 4 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 25634 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . 3 (𝜑𝐹:ℝ⟶ℝ)
6 i1fadd.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 25634 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . 3 (𝜑𝐺:ℝ⟶ℝ)
9 reex 11225 . . . 4 ℝ ∈ V
109a1i 11 . . 3 (𝜑 → ℝ ∈ V)
11 inidm 4207 . . 3 (ℝ ∩ ℝ) = ℝ
122, 5, 8, 10, 10, 11off 7694 . 2 (𝜑 → (𝐹f + 𝐺):ℝ⟶ℝ)
13 i1frn 25635 . . . . . 6 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
143, 13syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
15 i1frn 25635 . . . . . 6 (𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin)
166, 15syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ Fin)
17 xpfi 9335 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
1814, 16, 17syl2anc 584 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
19 eqid 2736 . . . . . 6 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))
20 ovex 7443 . . . . . 6 (𝑢 + 𝑣) ∈ V
2119, 20fnmpoi 8074 . . . . 5 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺)
22 dffn4 6801 . . . . 5 ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)))
2321, 22mpbi 230 . . . 4 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))
24 fofi 9328 . . . 4 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin)
2518, 23, 24sylancl 586 . . 3 (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin)
26 eqid 2736 . . . . . . . . 9 (𝑥 + 𝑦) = (𝑥 + 𝑦)
27 rspceov 7459 . . . . . . . . 9 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ∧ (𝑥 + 𝑦) = (𝑥 + 𝑦)) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
2826, 27mp3an3 1452 . . . . . . . 8 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
29 ovex 7443 . . . . . . . . 9 (𝑥 + 𝑦) ∈ V
30 eqeq1 2740 . . . . . . . . . 10 (𝑤 = (𝑥 + 𝑦) → (𝑤 = (𝑢 + 𝑣) ↔ (𝑥 + 𝑦) = (𝑢 + 𝑣)))
31302rexbidv 3210 . . . . . . . . 9 (𝑤 = (𝑥 + 𝑦) → (∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)))
3229, 31elab 3663 . . . . . . . 8 ((𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
3328, 32sylibr 234 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
3433adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
355ffnd 6712 . . . . . . 7 (𝜑𝐹 Fn ℝ)
36 dffn3 6723 . . . . . . 7 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
3735, 36sylib 218 . . . . . 6 (𝜑𝐹:ℝ⟶ran 𝐹)
388ffnd 6712 . . . . . . 7 (𝜑𝐺 Fn ℝ)
39 dffn3 6723 . . . . . . 7 (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺)
4038, 39sylib 218 . . . . . 6 (𝜑𝐺:ℝ⟶ran 𝐺)
4134, 37, 40, 10, 10, 11off 7694 . . . . 5 (𝜑 → (𝐹f + 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
4241frnd 6719 . . . 4 (𝜑 → ran (𝐹f + 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
4319rnmpo 7545 . . . 4 ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}
4442, 43sseqtrrdi 4005 . . 3 (𝜑 → ran (𝐹f + 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)))
4525, 44ssfid 9278 . 2 (𝜑 → ran (𝐹f + 𝐺) ∈ Fin)
4612frnd 6719 . . . . . . 7 (𝜑 → ran (𝐹f + 𝐺) ⊆ ℝ)
4746ssdifssd 4127 . . . . . 6 (𝜑 → (ran (𝐹f + 𝐺) ∖ {0}) ⊆ ℝ)
4847sselda 3963 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝑦 ∈ ℝ)
4948recnd 11268 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝑦 ∈ ℂ)
503, 6i1faddlem 25651 . . . 4 ((𝜑𝑦 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝑦}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))
5149, 50syldan 591 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ((𝐹f + 𝐺) “ {𝑦}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))
5216adantr 480 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ran 𝐺 ∈ Fin)
533ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ dom ∫1)
54 i1fmbf 25633 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
5553, 54syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ MblFn)
565ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹:ℝ⟶ℝ)
5712ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹f + 𝐺):ℝ⟶ℝ)
5857frnd 6719 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ran (𝐹f + 𝐺) ⊆ ℝ)
59 eldifi 4111 . . . . . . . . . 10 (𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0}) → 𝑦 ∈ ran (𝐹f + 𝐺))
6059ad2antlr 727 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ran (𝐹f + 𝐺))
6158, 60sseldd 3964 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ)
628adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝐺:ℝ⟶ℝ)
6362frnd 6719 . . . . . . . . 9 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ran 𝐺 ⊆ ℝ)
6463sselda 3963 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ)
6561, 64resubcld 11670 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝑧) ∈ ℝ)
66 mbfimasn 25590 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ (𝑦𝑧) ∈ ℝ) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
6755, 56, 65, 66syl3anc 1373 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
686ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ dom ∫1)
69 i1fmbf 25633 . . . . . . . 8 (𝐺 ∈ dom ∫1𝐺 ∈ MblFn)
7068, 69syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ MblFn)
718ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺:ℝ⟶ℝ)
72 mbfimasn 25590 . . . . . . 7 ((𝐺 ∈ MblFn ∧ 𝐺:ℝ⟶ℝ ∧ 𝑧 ∈ ℝ) → (𝐺 “ {𝑧}) ∈ dom vol)
7370, 71, 64, 72syl3anc 1373 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐺 “ {𝑧}) ∈ dom vol)
74 inmbl 25500 . . . . . 6 (((𝐹 “ {(𝑦𝑧)}) ∈ dom vol ∧ (𝐺 “ {𝑧}) ∈ dom vol) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7567, 73, 74syl2anc 584 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7675ralrimiva 3133 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
77 finiunmbl 25502 . . . 4 ((ran 𝐺 ∈ Fin ∧ ∀𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol) → 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7852, 76, 77syl2anc 584 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7951, 78eqeltrd 2835 . 2 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ((𝐹f + 𝐺) “ {𝑦}) ∈ dom vol)
80 mblvol 25488 . . . 4 (((𝐹f + 𝐺) “ {𝑦}) ∈ dom vol → (vol‘((𝐹f + 𝐺) “ {𝑦})) = (vol*‘((𝐹f + 𝐺) “ {𝑦})))
8179, 80syl 17 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘((𝐹f + 𝐺) “ {𝑦})) = (vol*‘((𝐹f + 𝐺) “ {𝑦})))
82 mblss 25489 . . . . 5 (((𝐹f + 𝐺) “ {𝑦}) ∈ dom vol → ((𝐹f + 𝐺) “ {𝑦}) ⊆ ℝ)
8379, 82syl 17 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ((𝐹f + 𝐺) “ {𝑦}) ⊆ ℝ)
84 inss1 4217 . . . . . . . 8 ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {(𝑦𝑧)})
8567adantrr 717 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
86 mblss 25489 . . . . . . . . 9 ((𝐹 “ {(𝑦𝑧)}) ∈ dom vol → (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ)
8785, 86syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ)
88 mblvol 25488 . . . . . . . . . 10 ((𝐹 “ {(𝑦𝑧)}) ∈ dom vol → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol*‘(𝐹 “ {(𝑦𝑧)})))
8985, 88syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol*‘(𝐹 “ {(𝑦𝑧)})))
90 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → 𝑧 = 0)
9190oveq2d 7426 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦𝑧) = (𝑦 − 0))
9249adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → 𝑦 ∈ ℂ)
9392subid1d 11588 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦 − 0) = 𝑦)
9491, 93eqtrd 2771 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦𝑧) = 𝑦)
9594sneqd 4618 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → {(𝑦𝑧)} = {𝑦})
9695imaeq2d 6052 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) = (𝐹 “ {𝑦}))
9796fveq2d 6885 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol‘(𝐹 “ {𝑦})))
98 i1fima2sn 25638 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
993, 98sylan 580 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
10099adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
10197, 100eqeltrd 2835 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ)
10289, 101eqeltrrd 2836 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol*‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ)
103 ovolsscl 25444 . . . . . . . 8 ((((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {(𝑦𝑧)}) ∧ (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
10484, 87, 102, 103mp3an2i 1468 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
105104expr 456 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 = 0 → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
106 eldifsn 4767 . . . . . . . 8 (𝑧 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑧 ∈ ran 𝐺𝑧 ≠ 0))
107 inss2 4218 . . . . . . . . 9 ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧})
108 eldifi 4111 . . . . . . . . . 10 (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ∈ ran 𝐺)
109 mblss 25489 . . . . . . . . . . 11 ((𝐺 “ {𝑧}) ∈ dom vol → (𝐺 “ {𝑧}) ⊆ ℝ)
11073, 109syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐺 “ {𝑧}) ⊆ ℝ)
111108, 110sylan2 593 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ⊆ ℝ)
112 i1fima 25636 . . . . . . . . . . . . 13 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑧}) ∈ dom vol)
1136, 112syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ {𝑧}) ∈ dom vol)
114113ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ∈ dom vol)
115 mblvol 25488 . . . . . . . . . . 11 ((𝐺 “ {𝑧}) ∈ dom vol → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
116114, 115syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
1176adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝐺 ∈ dom ∫1)
118 i1fima2sn 25638 . . . . . . . . . . 11 ((𝐺 ∈ dom ∫1𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
119117, 118sylan 580 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
120116, 119eqeltrrd 2836 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐺 “ {𝑧})) ∈ ℝ)
121 ovolsscl 25444 . . . . . . . . 9 ((((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}) ∧ (𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑧})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
122107, 111, 120, 121mp3an2i 1468 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
123106, 122sylan2br 595 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 ≠ 0)) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
124123expr 456 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 ≠ 0 → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
125105, 124pm2.61dne 3019 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
12652, 125fsumrecl 15755 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
12751fveq2d 6885 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) = (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
128107, 110sstrid 3975 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
129128, 125jca 511 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
130129ralrimiva 3133 . . . . . 6 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺(((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
131 ovolfiniun 25459 . . . . . 6 ((ran 𝐺 ∈ Fin ∧ ∀𝑧 ∈ ran 𝐺(((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)) → (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
13252, 130, 131syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
133127, 132eqbrtrd 5146 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
134 ovollecl 25441 . . . 4 ((((𝐹f + 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘((𝐹f + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) ∈ ℝ)
13583, 126, 133, 134syl3anc 1373 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) ∈ ℝ)
13681, 135eqeltrd 2835 . 2 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘((𝐹f + 𝐺) “ {𝑦})) ∈ ℝ)
13712, 45, 79, 136i1fd 25639 1 (𝜑 → (𝐹f + 𝐺) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cin 3930  wss 3931  {csn 4606   ciun 4972   class class class wbr 5124   × cxp 5657  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  cmpo 7412  f cof 7674  Fincfn 8964  cc 11132  cr 11133  0cc0 11134   + caddc 11137  cle 11275  cmin 11471  Σcsu 15707  vol*covol 25420  volcvol 25421  MblFncmbf 25572  1citg1 25573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xadd 13134  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-xmet 21313  df-met 21314  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578
This theorem is referenced by:  itg1addlem4  25657  i1fsub  25666  itg2splitlem  25706  itg2split  25707  itg2addlem  25716  itg2addnc  37703  ftc1anclem3  37724  ftc1anclem5  37726  ftc1anclem8  37729
  Copyright terms: Public domain W3C validator