Step | Hyp | Ref
| Expression |
1 | | readdcl 10955 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
2 | 1 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
3 | | i1fadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
4 | | i1ff 24838 |
. . . 4
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
6 | | i1fadd.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
7 | | i1ff 24838 |
. . . 4
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
8 | 6, 7 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
9 | | reex 10963 |
. . . 4
⊢ ℝ
∈ V |
10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ∈
V) |
11 | | inidm 4158 |
. . 3
⊢ (ℝ
∩ ℝ) = ℝ |
12 | 2, 5, 8, 10, 10, 11 | off 7545 |
. 2
⊢ (𝜑 → (𝐹 ∘f + 𝐺):ℝ⟶ℝ) |
13 | | i1frn 24839 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
14 | 3, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
15 | | i1frn 24839 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ ran 𝐺 ∈
Fin) |
16 | 6, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
17 | | xpfi 9063 |
. . . . 5
⊢ ((ran
𝐹 ∈ Fin ∧ ran
𝐺 ∈ Fin) → (ran
𝐹 × ran 𝐺) ∈ Fin) |
18 | 14, 16, 17 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin) |
19 | | eqid 2740 |
. . . . . 6
⊢ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) |
20 | | ovex 7304 |
. . . . . 6
⊢ (𝑢 + 𝑣) ∈ V |
21 | 19, 20 | fnmpoi 7903 |
. . . . 5
⊢ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺) |
22 | | dffn4 6692 |
. . . . 5
⊢ ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) |
23 | 21, 22 | mpbi 229 |
. . . 4
⊢ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) |
24 | | fofi 9083 |
. . . 4
⊢ (((ran
𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin) |
25 | 18, 23, 24 | sylancl 586 |
. . 3
⊢ (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin) |
26 | | eqid 2740 |
. . . . . . . . 9
⊢ (𝑥 + 𝑦) = (𝑥 + 𝑦) |
27 | | rspceov 7318 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ∧ (𝑥 + 𝑦) = (𝑥 + 𝑦)) → ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)) |
28 | 26, 27 | mp3an3 1449 |
. . . . . . . 8
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)) |
29 | | ovex 7304 |
. . . . . . . . 9
⊢ (𝑥 + 𝑦) ∈ V |
30 | | eqeq1 2744 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 + 𝑦) → (𝑤 = (𝑢 + 𝑣) ↔ (𝑥 + 𝑦) = (𝑢 + 𝑣))) |
31 | 30 | 2rexbidv 3231 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 + 𝑦) → (∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))) |
32 | 29, 31 | elab 3611 |
. . . . . . . 8
⊢ ((𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)) |
33 | 28, 32 | sylibr 233 |
. . . . . . 7
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}) |
34 | 33 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺)) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}) |
35 | 5 | ffnd 6599 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn ℝ) |
36 | | dffn3 6611 |
. . . . . . 7
⊢ (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹) |
37 | 35, 36 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ran 𝐹) |
38 | 8 | ffnd 6599 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn ℝ) |
39 | | dffn3 6611 |
. . . . . . 7
⊢ (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺) |
40 | 38, 39 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℝ⟶ran 𝐺) |
41 | 34, 37, 40, 10, 10, 11 | off 7545 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘f + 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}) |
42 | 41 | frnd 6606 |
. . . 4
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}) |
43 | 19 | rnmpo 7401 |
. . . 4
⊢ ran
(𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} |
44 | 42, 43 | sseqtrrdi 3977 |
. . 3
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) |
45 | 25, 44 | ssfid 9020 |
. 2
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ∈ Fin) |
46 | 12 | frnd 6606 |
. . . . . . 7
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ⊆ ℝ) |
47 | 46 | ssdifssd 4082 |
. . . . . 6
⊢ (𝜑 → (ran (𝐹 ∘f + 𝐺) ∖ {0}) ⊆
ℝ) |
48 | 47 | sselda 3926 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → 𝑦 ∈ ℝ) |
49 | 48 | recnd 11004 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → 𝑦 ∈ ℂ) |
50 | 3, 6 | i1faddlem 24855 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (◡(𝐹 ∘f + 𝐺) “ {𝑦}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) |
51 | 49, 50 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (◡(𝐹 ∘f + 𝐺) “ {𝑦}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) |
52 | 16 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → ran 𝐺 ∈ Fin) |
53 | 3 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ dom
∫1) |
54 | | i1fmbf 24837 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 ∈
MblFn) |
55 | 53, 54 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ MblFn) |
56 | 5 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹:ℝ⟶ℝ) |
57 | 12 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹 ∘f + 𝐺):ℝ⟶ℝ) |
58 | 57 | frnd 6606 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ran (𝐹 ∘f + 𝐺) ⊆ ℝ) |
59 | | eldifi 4066 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0}) → 𝑦 ∈ ran (𝐹 ∘f + 𝐺)) |
60 | 59 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ran (𝐹 ∘f + 𝐺)) |
61 | 58, 60 | sseldd 3927 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
62 | 8 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → 𝐺:ℝ⟶ℝ) |
63 | 62 | frnd 6606 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → ran 𝐺 ⊆ ℝ) |
64 | 63 | sselda 3926 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
65 | 61, 64 | resubcld 11403 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 − 𝑧) ∈ ℝ) |
66 | | mbfimasn 24794 |
. . . . . . 7
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧
(𝑦 − 𝑧) ∈ ℝ) → (◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol) |
67 | 55, 56, 65, 66 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol) |
68 | 6 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ dom
∫1) |
69 | | i1fmbf 24837 |
. . . . . . . 8
⊢ (𝐺 ∈ dom ∫1
→ 𝐺 ∈
MblFn) |
70 | 68, 69 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ MblFn) |
71 | 8 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺:ℝ⟶ℝ) |
72 | | mbfimasn 24794 |
. . . . . . 7
⊢ ((𝐺 ∈ MblFn ∧ 𝐺:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(◡𝐺 “ {𝑧}) ∈ dom vol) |
73 | 70, 71, 64, 72 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
74 | | inmbl 24704 |
. . . . . 6
⊢ (((◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol ∧ (◡𝐺 “ {𝑧}) ∈ dom vol) → ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
75 | 67, 73, 74 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
76 | 75 | ralrimiva 3110 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
77 | | finiunmbl 24706 |
. . . 4
⊢ ((ran
𝐺 ∈ Fin ∧
∀𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) → ∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
78 | 52, 76, 77 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → ∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
79 | 51, 78 | eqeltrd 2841 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (◡(𝐹 ∘f + 𝐺) “ {𝑦}) ∈ dom vol) |
80 | | mblvol 24692 |
. . . 4
⊢ ((◡(𝐹 ∘f + 𝐺) “ {𝑦}) ∈ dom vol → (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑦})) = (vol*‘(◡(𝐹 ∘f + 𝐺) “ {𝑦}))) |
81 | 79, 80 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑦})) = (vol*‘(◡(𝐹 ∘f + 𝐺) “ {𝑦}))) |
82 | | mblss 24693 |
. . . . 5
⊢ ((◡(𝐹 ∘f + 𝐺) “ {𝑦}) ∈ dom vol → (◡(𝐹 ∘f + 𝐺) “ {𝑦}) ⊆ ℝ) |
83 | 79, 82 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (◡(𝐹 ∘f + 𝐺) “ {𝑦}) ⊆ ℝ) |
84 | | inss1 4168 |
. . . . . . . 8
⊢ ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {(𝑦 − 𝑧)}) |
85 | 67 | adantrr 714 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol) |
86 | | mblss 24693 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol → (◡𝐹 “ {(𝑦 − 𝑧)}) ⊆ ℝ) |
87 | 85, 86 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (◡𝐹 “ {(𝑦 − 𝑧)}) ⊆ ℝ) |
88 | | mblvol 24692 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {(𝑦 − 𝑧)}) ∈ dom vol → (vol‘(◡𝐹 “ {(𝑦 − 𝑧)})) = (vol*‘(◡𝐹 “ {(𝑦 − 𝑧)}))) |
89 | 85, 88 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol‘(◡𝐹 “ {(𝑦 − 𝑧)})) = (vol*‘(◡𝐹 “ {(𝑦 − 𝑧)}))) |
90 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → 𝑧 = 0) |
91 | 90 | oveq2d 7287 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (𝑦 − 𝑧) = (𝑦 − 0)) |
92 | 49 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → 𝑦 ∈ ℂ) |
93 | 92 | subid1d 11321 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (𝑦 − 0) = 𝑦) |
94 | 91, 93 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (𝑦 − 𝑧) = 𝑦) |
95 | 94 | sneqd 4579 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → {(𝑦 − 𝑧)} = {𝑦}) |
96 | 95 | imaeq2d 5968 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (◡𝐹 “ {(𝑦 − 𝑧)}) = (◡𝐹 “ {𝑦})) |
97 | 96 | fveq2d 6775 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol‘(◡𝐹 “ {(𝑦 − 𝑧)})) = (vol‘(◡𝐹 “ {𝑦}))) |
98 | | i1fima2sn 24842 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) →
(vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
99 | 3, 98 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
100 | 99 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
101 | 97, 100 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol‘(◡𝐹 “ {(𝑦 − 𝑧)})) ∈ ℝ) |
102 | 89, 101 | eqeltrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol*‘(◡𝐹 “ {(𝑦 − 𝑧)})) ∈ ℝ) |
103 | | ovolsscl 24648 |
. . . . . . . 8
⊢ ((((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {(𝑦 − 𝑧)}) ∧ (◡𝐹 “ {(𝑦 − 𝑧)}) ⊆ ℝ ∧ (vol*‘(◡𝐹 “ {(𝑦 − 𝑧)})) ∈ ℝ) →
(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
104 | 84, 87, 102, 103 | mp3an2i 1465 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0)) → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
105 | 104 | expr 457 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 = 0 → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
106 | | eldifsn 4726 |
. . . . . . . 8
⊢ (𝑧 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑧 ∈ ran 𝐺 ∧ 𝑧 ≠ 0)) |
107 | | inss2 4169 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) |
108 | | eldifi 4066 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ∈ ran 𝐺) |
109 | | mblss 24693 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ {𝑧}) ∈ dom vol → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
110 | 73, 109 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
111 | 108, 110 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
112 | | i1fima 24840 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ dom ∫1
→ (◡𝐺 “ {𝑧}) ∈ dom vol) |
113 | 6, 112 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐺 “ {𝑧}) ∈ dom vol) |
114 | 113 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
115 | | mblvol 24692 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ {𝑧}) ∈ dom vol → (vol‘(◡𝐺 “ {𝑧})) = (vol*‘(◡𝐺 “ {𝑧}))) |
116 | 114, 115 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = (vol*‘(◡𝐺 “ {𝑧}))) |
117 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → 𝐺 ∈ dom
∫1) |
118 | | i1fima2sn 24842 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(◡𝐺 “ {𝑧})) ∈ ℝ) |
119 | 117, 118 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) ∈ ℝ) |
120 | 116, 119 | eqeltrrd 2842 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(◡𝐺 “ {𝑧})) ∈ ℝ) |
121 | | ovolsscl 24648 |
. . . . . . . . 9
⊢ ((((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) ∧ (◡𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(◡𝐺 “ {𝑧})) ∈ ℝ) →
(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
122 | 107, 111,
120, 121 | mp3an2i 1465 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
123 | 106, 122 | sylan2br 595 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑧 ≠ 0)) → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
124 | 123 | expr 457 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 ≠ 0 → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
125 | 105, 124 | pm2.61dne 3033 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
126 | 52, 125 | fsumrecl 15444 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
127 | 51 | fveq2d 6775 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (vol*‘(◡(𝐹 ∘f + 𝐺) “ {𝑦})) = (vol*‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
128 | 107, 110 | sstrid 3937 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ) |
129 | 128, 125 | jca 512 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
130 | 129 | ralrimiva 3110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺(((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
131 | | ovolfiniun 24663 |
. . . . . 6
⊢ ((ran
𝐺 ∈ Fin ∧
∀𝑧 ∈ ran 𝐺(((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) →
(vol*‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
132 | 52, 130, 131 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (vol*‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
133 | 127, 132 | eqbrtrd 5101 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (vol*‘(◡(𝐹 ∘f + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
134 | | ovollecl 24645 |
. . . 4
⊢ (((◡(𝐹 ∘f + 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘(◡(𝐹 ∘f + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((◡𝐹 “ {(𝑦 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) → (vol*‘(◡(𝐹 ∘f + 𝐺) “ {𝑦})) ∈ ℝ) |
135 | 83, 126, 133, 134 | syl3anc 1370 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (vol*‘(◡(𝐹 ∘f + 𝐺) “ {𝑦})) ∈ ℝ) |
136 | 81, 135 | eqeltrd 2841 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {0})) → (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑦})) ∈ ℝ) |
137 | 12, 45, 79, 136 | i1fd 24843 |
1
⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ dom
∫1) |