MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fadd Structured version   Visualization version   GIF version

Theorem i1fadd 25624
Description: The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fadd (𝜑 → (𝐹f + 𝐺) ∈ dom ∫1)

Proof of Theorem i1fadd
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 11096 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
21adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
3 i1fadd.1 . . . 4 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 25605 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . 3 (𝜑𝐹:ℝ⟶ℝ)
6 i1fadd.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 25605 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . 3 (𝜑𝐺:ℝ⟶ℝ)
9 reex 11104 . . . 4 ℝ ∈ V
109a1i 11 . . 3 (𝜑 → ℝ ∈ V)
11 inidm 4176 . . 3 (ℝ ∩ ℝ) = ℝ
122, 5, 8, 10, 10, 11off 7634 . 2 (𝜑 → (𝐹f + 𝐺):ℝ⟶ℝ)
13 i1frn 25606 . . . . . 6 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
143, 13syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
15 i1frn 25606 . . . . . 6 (𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin)
166, 15syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ Fin)
17 xpfi 9211 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
1814, 16, 17syl2anc 584 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
19 eqid 2733 . . . . . 6 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))
20 ovex 7385 . . . . . 6 (𝑢 + 𝑣) ∈ V
2119, 20fnmpoi 8008 . . . . 5 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺)
22 dffn4 6746 . . . . 5 ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)))
2321, 22mpbi 230 . . . 4 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))
24 fofi 9204 . . . 4 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin)
2518, 23, 24sylancl 586 . . 3 (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin)
26 eqid 2733 . . . . . . . . 9 (𝑥 + 𝑦) = (𝑥 + 𝑦)
27 rspceov 7401 . . . . . . . . 9 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ∧ (𝑥 + 𝑦) = (𝑥 + 𝑦)) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
2826, 27mp3an3 1452 . . . . . . . 8 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
29 ovex 7385 . . . . . . . . 9 (𝑥 + 𝑦) ∈ V
30 eqeq1 2737 . . . . . . . . . 10 (𝑤 = (𝑥 + 𝑦) → (𝑤 = (𝑢 + 𝑣) ↔ (𝑥 + 𝑦) = (𝑢 + 𝑣)))
31302rexbidv 3198 . . . . . . . . 9 (𝑤 = (𝑥 + 𝑦) → (∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)))
3229, 31elab 3631 . . . . . . . 8 ((𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
3328, 32sylibr 234 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
3433adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
355ffnd 6657 . . . . . . 7 (𝜑𝐹 Fn ℝ)
36 dffn3 6668 . . . . . . 7 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
3735, 36sylib 218 . . . . . 6 (𝜑𝐹:ℝ⟶ran 𝐹)
388ffnd 6657 . . . . . . 7 (𝜑𝐺 Fn ℝ)
39 dffn3 6668 . . . . . . 7 (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺)
4038, 39sylib 218 . . . . . 6 (𝜑𝐺:ℝ⟶ran 𝐺)
4134, 37, 40, 10, 10, 11off 7634 . . . . 5 (𝜑 → (𝐹f + 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
4241frnd 6664 . . . 4 (𝜑 → ran (𝐹f + 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
4319rnmpo 7485 . . . 4 ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}
4442, 43sseqtrrdi 3972 . . 3 (𝜑 → ran (𝐹f + 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)))
4525, 44ssfid 9160 . 2 (𝜑 → ran (𝐹f + 𝐺) ∈ Fin)
4612frnd 6664 . . . . . . 7 (𝜑 → ran (𝐹f + 𝐺) ⊆ ℝ)
4746ssdifssd 4096 . . . . . 6 (𝜑 → (ran (𝐹f + 𝐺) ∖ {0}) ⊆ ℝ)
4847sselda 3930 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝑦 ∈ ℝ)
4948recnd 11147 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝑦 ∈ ℂ)
503, 6i1faddlem 25622 . . . 4 ((𝜑𝑦 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝑦}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))
5149, 50syldan 591 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ((𝐹f + 𝐺) “ {𝑦}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))
5216adantr 480 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ran 𝐺 ∈ Fin)
533ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ dom ∫1)
54 i1fmbf 25604 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
5553, 54syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ MblFn)
565ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹:ℝ⟶ℝ)
5712ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹f + 𝐺):ℝ⟶ℝ)
5857frnd 6664 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ran (𝐹f + 𝐺) ⊆ ℝ)
59 eldifi 4080 . . . . . . . . . 10 (𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0}) → 𝑦 ∈ ran (𝐹f + 𝐺))
6059ad2antlr 727 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ran (𝐹f + 𝐺))
6158, 60sseldd 3931 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ)
628adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝐺:ℝ⟶ℝ)
6362frnd 6664 . . . . . . . . 9 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ran 𝐺 ⊆ ℝ)
6463sselda 3930 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ)
6561, 64resubcld 11552 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝑧) ∈ ℝ)
66 mbfimasn 25561 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ (𝑦𝑧) ∈ ℝ) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
6755, 56, 65, 66syl3anc 1373 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
686ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ dom ∫1)
69 i1fmbf 25604 . . . . . . . 8 (𝐺 ∈ dom ∫1𝐺 ∈ MblFn)
7068, 69syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ MblFn)
718ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺:ℝ⟶ℝ)
72 mbfimasn 25561 . . . . . . 7 ((𝐺 ∈ MblFn ∧ 𝐺:ℝ⟶ℝ ∧ 𝑧 ∈ ℝ) → (𝐺 “ {𝑧}) ∈ dom vol)
7370, 71, 64, 72syl3anc 1373 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐺 “ {𝑧}) ∈ dom vol)
74 inmbl 25471 . . . . . 6 (((𝐹 “ {(𝑦𝑧)}) ∈ dom vol ∧ (𝐺 “ {𝑧}) ∈ dom vol) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7567, 73, 74syl2anc 584 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7675ralrimiva 3125 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
77 finiunmbl 25473 . . . 4 ((ran 𝐺 ∈ Fin ∧ ∀𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol) → 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7852, 76, 77syl2anc 584 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7951, 78eqeltrd 2833 . 2 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ((𝐹f + 𝐺) “ {𝑦}) ∈ dom vol)
80 mblvol 25459 . . . 4 (((𝐹f + 𝐺) “ {𝑦}) ∈ dom vol → (vol‘((𝐹f + 𝐺) “ {𝑦})) = (vol*‘((𝐹f + 𝐺) “ {𝑦})))
8179, 80syl 17 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘((𝐹f + 𝐺) “ {𝑦})) = (vol*‘((𝐹f + 𝐺) “ {𝑦})))
82 mblss 25460 . . . . 5 (((𝐹f + 𝐺) “ {𝑦}) ∈ dom vol → ((𝐹f + 𝐺) “ {𝑦}) ⊆ ℝ)
8379, 82syl 17 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ((𝐹f + 𝐺) “ {𝑦}) ⊆ ℝ)
84 inss1 4186 . . . . . . . 8 ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {(𝑦𝑧)})
8567adantrr 717 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
86 mblss 25460 . . . . . . . . 9 ((𝐹 “ {(𝑦𝑧)}) ∈ dom vol → (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ)
8785, 86syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ)
88 mblvol 25459 . . . . . . . . . 10 ((𝐹 “ {(𝑦𝑧)}) ∈ dom vol → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol*‘(𝐹 “ {(𝑦𝑧)})))
8985, 88syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol*‘(𝐹 “ {(𝑦𝑧)})))
90 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → 𝑧 = 0)
9190oveq2d 7368 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦𝑧) = (𝑦 − 0))
9249adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → 𝑦 ∈ ℂ)
9392subid1d 11468 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦 − 0) = 𝑦)
9491, 93eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦𝑧) = 𝑦)
9594sneqd 4587 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → {(𝑦𝑧)} = {𝑦})
9695imaeq2d 6013 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) = (𝐹 “ {𝑦}))
9796fveq2d 6832 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol‘(𝐹 “ {𝑦})))
98 i1fima2sn 25609 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
993, 98sylan 580 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
10099adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
10197, 100eqeltrd 2833 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ)
10289, 101eqeltrrd 2834 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol*‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ)
103 ovolsscl 25415 . . . . . . . 8 ((((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {(𝑦𝑧)}) ∧ (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
10484, 87, 102, 103mp3an2i 1468 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
105104expr 456 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 = 0 → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
106 eldifsn 4737 . . . . . . . 8 (𝑧 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑧 ∈ ran 𝐺𝑧 ≠ 0))
107 inss2 4187 . . . . . . . . 9 ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧})
108 eldifi 4080 . . . . . . . . . 10 (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ∈ ran 𝐺)
109 mblss 25460 . . . . . . . . . . 11 ((𝐺 “ {𝑧}) ∈ dom vol → (𝐺 “ {𝑧}) ⊆ ℝ)
11073, 109syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐺 “ {𝑧}) ⊆ ℝ)
111108, 110sylan2 593 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ⊆ ℝ)
112 i1fima 25607 . . . . . . . . . . . . 13 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑧}) ∈ dom vol)
1136, 112syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ {𝑧}) ∈ dom vol)
114113ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ∈ dom vol)
115 mblvol 25459 . . . . . . . . . . 11 ((𝐺 “ {𝑧}) ∈ dom vol → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
116114, 115syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
1176adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝐺 ∈ dom ∫1)
118 i1fima2sn 25609 . . . . . . . . . . 11 ((𝐺 ∈ dom ∫1𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
119117, 118sylan 580 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
120116, 119eqeltrrd 2834 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐺 “ {𝑧})) ∈ ℝ)
121 ovolsscl 25415 . . . . . . . . 9 ((((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}) ∧ (𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑧})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
122107, 111, 120, 121mp3an2i 1468 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
123106, 122sylan2br 595 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 ≠ 0)) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
124123expr 456 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 ≠ 0 → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
125105, 124pm2.61dne 3015 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
12652, 125fsumrecl 15643 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
12751fveq2d 6832 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) = (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
128107, 110sstrid 3942 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
129128, 125jca 511 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
130129ralrimiva 3125 . . . . . 6 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺(((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
131 ovolfiniun 25430 . . . . . 6 ((ran 𝐺 ∈ Fin ∧ ∀𝑧 ∈ ran 𝐺(((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)) → (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
13252, 130, 131syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
133127, 132eqbrtrd 5115 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
134 ovollecl 25412 . . . 4 ((((𝐹f + 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘((𝐹f + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) ∈ ℝ)
13583, 126, 133, 134syl3anc 1373 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) ∈ ℝ)
13681, 135eqeltrd 2833 . 2 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘((𝐹f + 𝐺) “ {𝑦})) ∈ ℝ)
13712, 45, 79, 136i1fd 25610 1 (𝜑 → (𝐹f + 𝐺) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cdif 3895  cin 3897  wss 3898  {csn 4575   ciun 4941   class class class wbr 5093   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7352  cmpo 7354  f cof 7614  Fincfn 8875  cc 11011  cr 11012  0cc0 11013   + caddc 11016  cle 11154  cmin 11351  Σcsu 15595  vol*covol 25391  volcvol 25392  MblFncmbf 25543  1citg1 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xadd 13014  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-xmet 21286  df-met 21287  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549
This theorem is referenced by:  itg1addlem4  25628  i1fsub  25637  itg2splitlem  25677  itg2split  25678  itg2addlem  25687  itg2addnc  37735  ftc1anclem3  37756  ftc1anclem5  37758  ftc1anclem8  37761
  Copyright terms: Public domain W3C validator