![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > suppssnn0 | Structured version Visualization version GIF version |
Description: Show that the support of a function is contained in an half-open nonnegative integer range. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
Ref | Expression |
---|---|
suppssnn0.f | ⊢ (𝜑 → 𝐹 Fn ℕ0) |
suppssnn0.n | ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑁 ≤ 𝑘) → (𝐹‘𝑘) = 𝑍) |
suppssnn0.1 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
suppssnn0 | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssnn0.f | . . 3 ⊢ (𝜑 → 𝐹 Fn ℕ0) | |
2 | dffn3 6756 | . . 3 ⊢ (𝐹 Fn ℕ0 ↔ 𝐹:ℕ0⟶ran 𝐹) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:ℕ0⟶ran 𝐹) |
4 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝜑) | |
5 | eldifi 4144 | . . . 4 ⊢ (𝑘 ∈ (ℕ0 ∖ (0..^𝑁)) → 𝑘 ∈ ℕ0) | |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑘 ∈ ℕ0) |
7 | suppssnn0.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
8 | 7 | zred 12729 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑁 ∈ ℝ) |
10 | 6 | nn0red 12595 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑘 ∈ ℝ) |
11 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑁 ∈ ℤ) |
12 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) | |
13 | 11, 12 | nn0difffzod 32828 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → ¬ 𝑘 < 𝑁) |
14 | 9, 10, 13 | nltled 11418 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑁 ≤ 𝑘) |
15 | suppssnn0.n | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑁 ≤ 𝑘) → (𝐹‘𝑘) = 𝑍) | |
16 | 4, 6, 14, 15 | syl21anc 838 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → (𝐹‘𝑘) = 𝑍) |
17 | 3, 16 | suppss 8227 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3963 ⊆ wss 3966 class class class wbr 5151 ran crn 5694 Fn wfn 6564 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 supp csupp 8193 ℝcr 11161 0cc0 11162 ≤ cle 11303 ℕ0cn0 12533 ℤcz 12620 ..^cfzo 13700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 |
This theorem is referenced by: ply1degltdimlem 33682 |
Copyright terms: Public domain | W3C validator |