| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suppssnn0 | Structured version Visualization version GIF version | ||
| Description: Show that the support of a function is contained in an half-open nonnegative integer range. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| suppssnn0.f | ⊢ (𝜑 → 𝐹 Fn ℕ0) |
| suppssnn0.n | ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑁 ≤ 𝑘) → (𝐹‘𝑘) = 𝑍) |
| suppssnn0.1 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| suppssnn0 | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0..^𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssnn0.f | . . 3 ⊢ (𝜑 → 𝐹 Fn ℕ0) | |
| 2 | dffn3 6671 | . . 3 ⊢ (𝐹 Fn ℕ0 ↔ 𝐹:ℕ0⟶ran 𝐹) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:ℕ0⟶ran 𝐹) |
| 4 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝜑) | |
| 5 | eldifi 4080 | . . . 4 ⊢ (𝑘 ∈ (ℕ0 ∖ (0..^𝑁)) → 𝑘 ∈ ℕ0) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑘 ∈ ℕ0) |
| 7 | suppssnn0.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 8 | 7 | zred 12587 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑁 ∈ ℝ) |
| 10 | 6 | nn0red 12454 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑘 ∈ ℝ) |
| 11 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑁 ∈ ℤ) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) | |
| 13 | 11, 12 | nn0difffzod 32812 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → ¬ 𝑘 < 𝑁) |
| 14 | 9, 10, 13 | nltled 11274 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑁 ≤ 𝑘) |
| 15 | suppssnn0.n | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑁 ≤ 𝑘) → (𝐹‘𝑘) = 𝑍) | |
| 16 | 4, 6, 14, 15 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → (𝐹‘𝑘) = 𝑍) |
| 17 | 3, 16 | suppss 8133 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0..^𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 class class class wbr 5095 ran crn 5622 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 supp csupp 8099 ℝcr 11016 0cc0 11017 ≤ cle 11158 ℕ0cn0 12392 ℤcz 12479 ..^cfzo 13561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 |
| This theorem is referenced by: ply1degltdimlem 33707 |
| Copyright terms: Public domain | W3C validator |