| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suppssnn0 | Structured version Visualization version GIF version | ||
| Description: Show that the support of a function is contained in an half-open nonnegative integer range. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| suppssnn0.f | ⊢ (𝜑 → 𝐹 Fn ℕ0) |
| suppssnn0.n | ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑁 ≤ 𝑘) → (𝐹‘𝑘) = 𝑍) |
| suppssnn0.1 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| suppssnn0 | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0..^𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssnn0.f | . . 3 ⊢ (𝜑 → 𝐹 Fn ℕ0) | |
| 2 | dffn3 6700 | . . 3 ⊢ (𝐹 Fn ℕ0 ↔ 𝐹:ℕ0⟶ran 𝐹) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹:ℕ0⟶ran 𝐹) |
| 4 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝜑) | |
| 5 | eldifi 4094 | . . . 4 ⊢ (𝑘 ∈ (ℕ0 ∖ (0..^𝑁)) → 𝑘 ∈ ℕ0) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑘 ∈ ℕ0) |
| 7 | suppssnn0.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 8 | 7 | zred 12638 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑁 ∈ ℝ) |
| 10 | 6 | nn0red 12504 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑘 ∈ ℝ) |
| 11 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑁 ∈ ℤ) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) | |
| 13 | 11, 12 | nn0difffzod 32729 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → ¬ 𝑘 < 𝑁) |
| 14 | 9, 10, 13 | nltled 11324 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → 𝑁 ≤ 𝑘) |
| 15 | suppssnn0.n | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑁 ≤ 𝑘) → (𝐹‘𝑘) = 𝑍) | |
| 16 | 4, 6, 14, 15 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℕ0 ∖ (0..^𝑁))) → (𝐹‘𝑘) = 𝑍) |
| 17 | 3, 16 | suppss 8173 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0..^𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 class class class wbr 5107 ran crn 5639 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 ℝcr 11067 0cc0 11068 ≤ cle 11209 ℕ0cn0 12442 ℤcz 12529 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 |
| This theorem is referenced by: ply1degltdimlem 33618 |
| Copyright terms: Public domain | W3C validator |