MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmul Structured version   Visualization version   GIF version

Theorem i1fmul 24214
Description: The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fmul (𝜑 → (𝐹f · 𝐺) ∈ dom ∫1)

Proof of Theorem i1fmul
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 10614 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
21adantl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
3 i1fadd.1 . . . 4 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 24194 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . 3 (𝜑𝐹:ℝ⟶ℝ)
6 i1fadd.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 24194 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . 3 (𝜑𝐺:ℝ⟶ℝ)
9 reex 10620 . . . 4 ℝ ∈ V
109a1i 11 . . 3 (𝜑 → ℝ ∈ V)
11 inidm 4198 . . 3 (ℝ ∩ ℝ) = ℝ
122, 5, 8, 10, 10, 11off 7417 . 2 (𝜑 → (𝐹f · 𝐺):ℝ⟶ℝ)
13 i1frn 24195 . . . . . 6 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
143, 13syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
15 i1frn 24195 . . . . . 6 (𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin)
166, 15syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ Fin)
17 xpfi 8781 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
1814, 16, 17syl2anc 584 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
19 eqid 2825 . . . . . 6 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))
20 ovex 7184 . . . . . 6 (𝑢 · 𝑣) ∈ V
2119, 20fnmpoi 7762 . . . . 5 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺)
22 dffn4 6592 . . . . 5 ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)))
2321, 22mpbi 231 . . . 4 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))
24 fofi 8802 . . . 4 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin)
2518, 23, 24sylancl 586 . . 3 (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin)
26 eqid 2825 . . . . . . . . 9 (𝑥 · 𝑦) = (𝑥 · 𝑦)
27 rspceov 7198 . . . . . . . . 9 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ∧ (𝑥 · 𝑦) = (𝑥 · 𝑦)) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
2826, 27mp3an3 1443 . . . . . . . 8 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
29 ovex 7184 . . . . . . . . 9 (𝑥 · 𝑦) ∈ V
30 eqeq1 2829 . . . . . . . . . 10 (𝑤 = (𝑥 · 𝑦) → (𝑤 = (𝑢 · 𝑣) ↔ (𝑥 · 𝑦) = (𝑢 · 𝑣)))
31302rexbidv 3304 . . . . . . . . 9 (𝑤 = (𝑥 · 𝑦) → (∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣) ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣)))
3229, 31elab 3670 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
3328, 32sylibr 235 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
3433adantl 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
355ffnd 6511 . . . . . . 7 (𝜑𝐹 Fn ℝ)
36 dffn3 6521 . . . . . . 7 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
3735, 36sylib 219 . . . . . 6 (𝜑𝐹:ℝ⟶ran 𝐹)
388ffnd 6511 . . . . . . 7 (𝜑𝐺 Fn ℝ)
39 dffn3 6521 . . . . . . 7 (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺)
4038, 39sylib 219 . . . . . 6 (𝜑𝐺:ℝ⟶ran 𝐺)
4134, 37, 40, 10, 10, 11off 7417 . . . . 5 (𝜑 → (𝐹f · 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
4241frnd 6517 . . . 4 (𝜑 → ran (𝐹f · 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
4319rnmpo 7277 . . . 4 ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)}
4442, 43sseqtrrdi 4021 . . 3 (𝜑 → ran (𝐹f · 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)))
4525, 44ssfid 8733 . 2 (𝜑 → ran (𝐹f · 𝐺) ∈ Fin)
4612frnd 6517 . . . . . . 7 (𝜑 → ran (𝐹f · 𝐺) ⊆ ℝ)
47 ax-resscn 10586 . . . . . . 7 ℝ ⊆ ℂ
4846, 47syl6ss 3982 . . . . . 6 (𝜑 → ran (𝐹f · 𝐺) ⊆ ℂ)
4948ssdifd 4120 . . . . 5 (𝜑 → (ran (𝐹f · 𝐺) ∖ {0}) ⊆ (ℂ ∖ {0}))
5049sselda 3970 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
513, 6i1fmullem 24212 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) = 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))
5250, 51syldan 591 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) = 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))
53 difss 4111 . . . . . 6 (ran 𝐺 ∖ {0}) ⊆ ran 𝐺
54 ssfi 8730 . . . . . 6 ((ran 𝐺 ∈ Fin ∧ (ran 𝐺 ∖ {0}) ⊆ ran 𝐺) → (ran 𝐺 ∖ {0}) ∈ Fin)
5516, 53, 54sylancl 586 . . . . 5 (𝜑 → (ran 𝐺 ∖ {0}) ∈ Fin)
56 i1fima 24196 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol)
573, 56syl 17 . . . . . . 7 (𝜑 → (𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol)
58 i1fima 24196 . . . . . . . 8 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑧}) ∈ dom vol)
596, 58syl 17 . . . . . . 7 (𝜑 → (𝐺 “ {𝑧}) ∈ dom vol)
60 inmbl 24060 . . . . . . 7 (((𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol ∧ (𝐺 “ {𝑧}) ∈ dom vol) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6157, 59, 60syl2anc 584 . . . . . 6 (𝜑 → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6261ralrimivw 3187 . . . . 5 (𝜑 → ∀𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
63 finiunmbl 24062 . . . . 5 (((ran 𝐺 ∖ {0}) ∈ Fin ∧ ∀𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol) → 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6455, 62, 63syl2anc 584 . . . 4 (𝜑 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6564adantr 481 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6652, 65eqeltrd 2917 . 2 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) ∈ dom vol)
67 mblvol 24048 . . . 4 (((𝐹f · 𝐺) “ {𝑦}) ∈ dom vol → (vol‘((𝐹f · 𝐺) “ {𝑦})) = (vol*‘((𝐹f · 𝐺) “ {𝑦})))
6866, 67syl 17 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol‘((𝐹f · 𝐺) “ {𝑦})) = (vol*‘((𝐹f · 𝐺) “ {𝑦})))
69 mblss 24049 . . . . 5 (((𝐹f · 𝐺) “ {𝑦}) ∈ dom vol → ((𝐹f · 𝐺) “ {𝑦}) ⊆ ℝ)
7066, 69syl 17 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) ⊆ ℝ)
7155adantr 481 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (ran 𝐺 ∖ {0}) ∈ Fin)
72 inss2 4209 . . . . . . 7 ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧})
7372a1i 11 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}))
7459ad2antrr 722 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ∈ dom vol)
75 mblss 24049 . . . . . . 7 ((𝐺 “ {𝑧}) ∈ dom vol → (𝐺 “ {𝑧}) ⊆ ℝ)
7674, 75syl 17 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ⊆ ℝ)
77 mblvol 24048 . . . . . . . 8 ((𝐺 “ {𝑧}) ∈ dom vol → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
7874, 77syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
796adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → 𝐺 ∈ dom ∫1)
80 i1fima2sn 24198 . . . . . . . 8 ((𝐺 ∈ dom ∫1𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
8179, 80sylan 580 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
8278, 81eqeltrrd 2918 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐺 “ {𝑧})) ∈ ℝ)
83 ovolsscl 24004 . . . . . 6 ((((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}) ∧ (𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑧})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8473, 76, 82, 83syl3anc 1365 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8571, 84fsumrecl 15083 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8652fveq2d 6670 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) = (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
87 mblss 24049 . . . . . . . . . 10 (((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
8861, 87syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
8988ad2antrr 722 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
9089, 84jca 512 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
9190ralrimiva 3186 . . . . . 6 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ∀𝑧 ∈ (ran 𝐺 ∖ {0})(((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
92 ovolfiniun 24019 . . . . . 6 (((ran 𝐺 ∖ {0}) ∈ Fin ∧ ∀𝑧 ∈ (ran 𝐺 ∖ {0})(((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)) → (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
9371, 91, 92syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
9486, 93eqbrtrd 5084 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
95 ovollecl 24001 . . . 4 ((((𝐹f · 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘((𝐹f · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) ∈ ℝ)
9670, 85, 94, 95syl3anc 1365 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) ∈ ℝ)
9768, 96eqeltrd 2917 . 2 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol‘((𝐹f · 𝐺) “ {𝑦})) ∈ ℝ)
9812, 45, 66, 97i1fd 24199 1 (𝜑 → (𝐹f · 𝐺) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  {cab 2803  wral 3142  wrex 3143  Vcvv 3499  cdif 3936  cin 3938  wss 3939  {csn 4563   ciun 4916   class class class wbr 5062   × cxp 5551  ccnv 5552  dom cdm 5553  ran crn 5554  cima 5556   Fn wfn 6346  wf 6347  ontowfo 6349  cfv 6351  (class class class)co 7151  cmpo 7153  f cof 7400  Fincfn 8501  cc 10527  cr 10528  0cc0 10529   · cmul 10534  cle 10668   / cdiv 11289  Σcsu 15035  vol*covol 23980  volcvol 23981  1citg1 24133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-xadd 12501  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-xmet 20456  df-met 20457  df-ovol 23982  df-vol 23983  df-mbf 24137  df-itg1 24138
This theorem is referenced by:  mbfmullem2  24242  ftc1anclem3  34838
  Copyright terms: Public domain W3C validator