MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmul Structured version   Visualization version   GIF version

Theorem i1fmul 25573
Description: The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fmul (𝜑 → (𝐹f · 𝐺) ∈ dom ∫1)

Proof of Theorem i1fmul
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 11129 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
21adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
3 i1fadd.1 . . . 4 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 25553 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . 3 (𝜑𝐹:ℝ⟶ℝ)
6 i1fadd.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 25553 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . 3 (𝜑𝐺:ℝ⟶ℝ)
9 reex 11135 . . . 4 ℝ ∈ V
109a1i 11 . . 3 (𝜑 → ℝ ∈ V)
11 inidm 4186 . . 3 (ℝ ∩ ℝ) = ℝ
122, 5, 8, 10, 10, 11off 7651 . 2 (𝜑 → (𝐹f · 𝐺):ℝ⟶ℝ)
13 i1frn 25554 . . . . . 6 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
143, 13syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
15 i1frn 25554 . . . . . 6 (𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin)
166, 15syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ Fin)
17 xpfi 9245 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
1814, 16, 17syl2anc 584 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
19 eqid 2729 . . . . . 6 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))
20 ovex 7402 . . . . . 6 (𝑢 · 𝑣) ∈ V
2119, 20fnmpoi 8028 . . . . 5 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺)
22 dffn4 6760 . . . . 5 ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)))
2321, 22mpbi 230 . . . 4 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))
24 fofi 9238 . . . 4 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin)
2518, 23, 24sylancl 586 . . 3 (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin)
26 eqid 2729 . . . . . . . . 9 (𝑥 · 𝑦) = (𝑥 · 𝑦)
27 rspceov 7418 . . . . . . . . 9 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ∧ (𝑥 · 𝑦) = (𝑥 · 𝑦)) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
2826, 27mp3an3 1452 . . . . . . . 8 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
29 ovex 7402 . . . . . . . . 9 (𝑥 · 𝑦) ∈ V
30 eqeq1 2733 . . . . . . . . . 10 (𝑤 = (𝑥 · 𝑦) → (𝑤 = (𝑢 · 𝑣) ↔ (𝑥 · 𝑦) = (𝑢 · 𝑣)))
31302rexbidv 3200 . . . . . . . . 9 (𝑤 = (𝑥 · 𝑦) → (∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣) ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣)))
3229, 31elab 3643 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))
3328, 32sylibr 234 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
3433adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
355ffnd 6671 . . . . . . 7 (𝜑𝐹 Fn ℝ)
36 dffn3 6682 . . . . . . 7 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
3735, 36sylib 218 . . . . . 6 (𝜑𝐹:ℝ⟶ran 𝐹)
388ffnd 6671 . . . . . . 7 (𝜑𝐺 Fn ℝ)
39 dffn3 6682 . . . . . . 7 (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺)
4038, 39sylib 218 . . . . . 6 (𝜑𝐺:ℝ⟶ran 𝐺)
4134, 37, 40, 10, 10, 11off 7651 . . . . 5 (𝜑 → (𝐹f · 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
4241frnd 6678 . . . 4 (𝜑 → ran (𝐹f · 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)})
4319rnmpo 7502 . . . 4 ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)}
4442, 43sseqtrrdi 3985 . . 3 (𝜑 → ran (𝐹f · 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)))
4525, 44ssfid 9188 . 2 (𝜑 → ran (𝐹f · 𝐺) ∈ Fin)
4612frnd 6678 . . . . . . 7 (𝜑 → ran (𝐹f · 𝐺) ⊆ ℝ)
47 ax-resscn 11101 . . . . . . 7 ℝ ⊆ ℂ
4846, 47sstrdi 3956 . . . . . 6 (𝜑 → ran (𝐹f · 𝐺) ⊆ ℂ)
4948ssdifd 4104 . . . . 5 (𝜑 → (ran (𝐹f · 𝐺) ∖ {0}) ⊆ (ℂ ∖ {0}))
5049sselda 3943 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
513, 6i1fmullem 25571 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) = 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))
5250, 51syldan 591 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) = 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))
53 difss 4095 . . . . . 6 (ran 𝐺 ∖ {0}) ⊆ ran 𝐺
54 ssfi 9114 . . . . . 6 ((ran 𝐺 ∈ Fin ∧ (ran 𝐺 ∖ {0}) ⊆ ran 𝐺) → (ran 𝐺 ∖ {0}) ∈ Fin)
5516, 53, 54sylancl 586 . . . . 5 (𝜑 → (ran 𝐺 ∖ {0}) ∈ Fin)
56 i1fima 25555 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol)
573, 56syl 17 . . . . . . 7 (𝜑 → (𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol)
58 i1fima 25555 . . . . . . . 8 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑧}) ∈ dom vol)
596, 58syl 17 . . . . . . 7 (𝜑 → (𝐺 “ {𝑧}) ∈ dom vol)
60 inmbl 25419 . . . . . . 7 (((𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol ∧ (𝐺 “ {𝑧}) ∈ dom vol) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6157, 59, 60syl2anc 584 . . . . . 6 (𝜑 → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6261ralrimivw 3129 . . . . 5 (𝜑 → ∀𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
63 finiunmbl 25421 . . . . 5 (((ran 𝐺 ∖ {0}) ∈ Fin ∧ ∀𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol) → 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6455, 62, 63syl2anc 584 . . . 4 (𝜑 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6564adantr 480 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
6652, 65eqeltrd 2828 . 2 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) ∈ dom vol)
67 mblvol 25407 . . . 4 (((𝐹f · 𝐺) “ {𝑦}) ∈ dom vol → (vol‘((𝐹f · 𝐺) “ {𝑦})) = (vol*‘((𝐹f · 𝐺) “ {𝑦})))
6866, 67syl 17 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol‘((𝐹f · 𝐺) “ {𝑦})) = (vol*‘((𝐹f · 𝐺) “ {𝑦})))
69 mblss 25408 . . . . 5 (((𝐹f · 𝐺) “ {𝑦}) ∈ dom vol → ((𝐹f · 𝐺) “ {𝑦}) ⊆ ℝ)
7066, 69syl 17 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ((𝐹f · 𝐺) “ {𝑦}) ⊆ ℝ)
7155adantr 480 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (ran 𝐺 ∖ {0}) ∈ Fin)
72 inss2 4197 . . . . . . 7 ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧})
7372a1i 11 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}))
7459ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ∈ dom vol)
75 mblss 25408 . . . . . . 7 ((𝐺 “ {𝑧}) ∈ dom vol → (𝐺 “ {𝑧}) ⊆ ℝ)
7674, 75syl 17 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ⊆ ℝ)
77 mblvol 25407 . . . . . . . 8 ((𝐺 “ {𝑧}) ∈ dom vol → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
7874, 77syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
796adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → 𝐺 ∈ dom ∫1)
80 i1fima2sn 25557 . . . . . . . 8 ((𝐺 ∈ dom ∫1𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
8179, 80sylan 580 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
8278, 81eqeltrrd 2829 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐺 “ {𝑧})) ∈ ℝ)
83 ovolsscl 25363 . . . . . 6 ((((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}) ∧ (𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑧})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8473, 76, 82, 83syl3anc 1373 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8571, 84fsumrecl 15676 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
8652fveq2d 6844 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) = (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
87 mblss 25408 . . . . . . . . . 10 (((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
8861, 87syl 17 . . . . . . . . 9 (𝜑 → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
8988ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
9089, 84jca 511 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
9190ralrimiva 3125 . . . . . 6 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → ∀𝑧 ∈ (ran 𝐺 ∖ {0})(((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
92 ovolfiniun 25378 . . . . . 6 (((ran 𝐺 ∖ {0}) ∈ Fin ∧ ∀𝑧 ∈ (ran 𝐺 ∖ {0})(((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)) → (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
9371, 91, 92syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘ 𝑧 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
9486, 93eqbrtrd 5124 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))))
95 ovollecl 25360 . . . 4 ((((𝐹f · 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘((𝐹f · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((𝐹 “ {(𝑦 / 𝑧)}) ∩ (𝐺 “ {𝑧})))) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) ∈ ℝ)
9670, 85, 94, 95syl3anc 1373 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol*‘((𝐹f · 𝐺) “ {𝑦})) ∈ ℝ)
9768, 96eqeltrd 2828 . 2 ((𝜑𝑦 ∈ (ran (𝐹f · 𝐺) ∖ {0})) → (vol‘((𝐹f · 𝐺) “ {𝑦})) ∈ ℝ)
9812, 45, 66, 97i1fd 25558 1 (𝜑 → (𝐹f · 𝐺) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  cin 3910  wss 3911  {csn 4585   ciun 4951   class class class wbr 5102   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  cmpo 7371  f cof 7631  Fincfn 8895  cc 11042  cr 11043  0cc0 11044   · cmul 11049  cle 11185   / cdiv 11811  Σcsu 15628  vol*covol 25339  volcvol 25340  1citg1 25492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xadd 13049  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-xmet 21233  df-met 21234  df-ovol 25341  df-vol 25342  df-mbf 25496  df-itg1 25497
This theorem is referenced by:  mbfmullem2  25601  ftc1anclem3  37662
  Copyright terms: Public domain W3C validator