Step | Hyp | Ref
| Expression |
1 | | remulcl 10665 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
2 | 1 | adantl 485 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
3 | | i1fadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
4 | | i1ff 24381 |
. . . 4
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
6 | | i1fadd.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
7 | | i1ff 24381 |
. . . 4
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
8 | 6, 7 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
9 | | reex 10671 |
. . . 4
⊢ ℝ
∈ V |
10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ∈
V) |
11 | | inidm 4125 |
. . 3
⊢ (ℝ
∩ ℝ) = ℝ |
12 | 2, 5, 8, 10, 10, 11 | off 7427 |
. 2
⊢ (𝜑 → (𝐹 ∘f · 𝐺):ℝ⟶ℝ) |
13 | | i1frn 24382 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
14 | 3, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
15 | | i1frn 24382 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ ran 𝐺 ∈
Fin) |
16 | 6, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
17 | | xpfi 8827 |
. . . . 5
⊢ ((ran
𝐹 ∈ Fin ∧ ran
𝐺 ∈ Fin) → (ran
𝐹 × ran 𝐺) ∈ Fin) |
18 | 14, 16, 17 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin) |
19 | | eqid 2758 |
. . . . . 6
⊢ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) |
20 | | ovex 7188 |
. . . . . 6
⊢ (𝑢 · 𝑣) ∈ V |
21 | 19, 20 | fnmpoi 7777 |
. . . . 5
⊢ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺) |
22 | | dffn4 6586 |
. . . . 5
⊢ ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))) |
23 | 21, 22 | mpbi 233 |
. . . 4
⊢ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) |
24 | | fofi 8848 |
. . . 4
⊢ (((ran
𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin) |
25 | 18, 23, 24 | sylancl 589 |
. . 3
⊢ (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) ∈ Fin) |
26 | | eqid 2758 |
. . . . . . . . 9
⊢ (𝑥 · 𝑦) = (𝑥 · 𝑦) |
27 | | rspceov 7202 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ∧ (𝑥 · 𝑦) = (𝑥 · 𝑦)) → ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣)) |
28 | 26, 27 | mp3an3 1447 |
. . . . . . . 8
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣)) |
29 | | ovex 7188 |
. . . . . . . . 9
⊢ (𝑥 · 𝑦) ∈ V |
30 | | eqeq1 2762 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 · 𝑦) → (𝑤 = (𝑢 · 𝑣) ↔ (𝑥 · 𝑦) = (𝑢 · 𝑣))) |
31 | 30 | 2rexbidv 3224 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 · 𝑦) → (∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣) ↔ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣))) |
32 | 29, 31 | elab 3590 |
. . . . . . . 8
⊢ ((𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺(𝑥 · 𝑦) = (𝑢 · 𝑣)) |
33 | 28, 32 | sylibr 237 |
. . . . . . 7
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)}) |
34 | 33 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺)) → (𝑥 · 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)}) |
35 | 5 | ffnd 6503 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn ℝ) |
36 | | dffn3 6514 |
. . . . . . 7
⊢ (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹) |
37 | 35, 36 | sylib 221 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ran 𝐹) |
38 | 8 | ffnd 6503 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn ℝ) |
39 | | dffn3 6514 |
. . . . . . 7
⊢ (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺) |
40 | 38, 39 | sylib 221 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℝ⟶ran 𝐺) |
41 | 34, 37, 40, 10, 10, 11 | off 7427 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘f · 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)}) |
42 | 41 | frnd 6509 |
. . . 4
⊢ (𝜑 → ran (𝐹 ∘f · 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)}) |
43 | 19 | rnmpo 7284 |
. . . 4
⊢ ran
(𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹∃𝑣 ∈ ran 𝐺 𝑤 = (𝑢 · 𝑣)} |
44 | 42, 43 | sseqtrrdi 3945 |
. . 3
⊢ (𝜑 → ran (𝐹 ∘f · 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 · 𝑣))) |
45 | 25, 44 | ssfid 8783 |
. 2
⊢ (𝜑 → ran (𝐹 ∘f · 𝐺) ∈ Fin) |
46 | 12 | frnd 6509 |
. . . . . . 7
⊢ (𝜑 → ran (𝐹 ∘f · 𝐺) ⊆
ℝ) |
47 | | ax-resscn 10637 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
48 | 46, 47 | sstrdi 3906 |
. . . . . 6
⊢ (𝜑 → ran (𝐹 ∘f · 𝐺) ⊆
ℂ) |
49 | 48 | ssdifd 4048 |
. . . . 5
⊢ (𝜑 → (ran (𝐹 ∘f · 𝐺) ∖ {0}) ⊆ (ℂ
∖ {0})) |
50 | 49 | sselda 3894 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) → 𝑦 ∈ (ℂ ∖
{0})) |
51 | 3, 6 | i1fmullem 24399 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {0})) → (◡(𝐹 ∘f · 𝐺) “ {𝑦}) = ∪
𝑧 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) |
52 | 50, 51 | syldan 594 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) → (◡(𝐹 ∘f · 𝐺) “ {𝑦}) = ∪
𝑧 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) |
53 | | difss 4039 |
. . . . . 6
⊢ (ran
𝐺 ∖ {0}) ⊆ ran
𝐺 |
54 | | ssfi 8747 |
. . . . . 6
⊢ ((ran
𝐺 ∈ Fin ∧ (ran
𝐺 ∖ {0}) ⊆ ran
𝐺) → (ran 𝐺 ∖ {0}) ∈
Fin) |
55 | 16, 53, 54 | sylancl 589 |
. . . . 5
⊢ (𝜑 → (ran 𝐺 ∖ {0}) ∈ Fin) |
56 | | i1fima 24383 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol) |
57 | 3, 56 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol) |
58 | | i1fima 24383 |
. . . . . . . 8
⊢ (𝐺 ∈ dom ∫1
→ (◡𝐺 “ {𝑧}) ∈ dom vol) |
59 | 6, 58 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (◡𝐺 “ {𝑧}) ∈ dom vol) |
60 | | inmbl 24247 |
. . . . . . 7
⊢ (((◡𝐹 “ {(𝑦 / 𝑧)}) ∈ dom vol ∧ (◡𝐺 “ {𝑧}) ∈ dom vol) → ((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
61 | 57, 59, 60 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → ((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
62 | 61 | ralrimivw 3114 |
. . . . 5
⊢ (𝜑 → ∀𝑧 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
63 | | finiunmbl 24249 |
. . . . 5
⊢ (((ran
𝐺 ∖ {0}) ∈ Fin
∧ ∀𝑧 ∈ (ran
𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) → ∪ 𝑧 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
64 | 55, 62, 63 | syl2anc 587 |
. . . 4
⊢ (𝜑 → ∪ 𝑧 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
65 | 64 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) → ∪ 𝑧 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
66 | 52, 65 | eqeltrd 2852 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) → (◡(𝐹 ∘f · 𝐺) “ {𝑦}) ∈ dom vol) |
67 | | mblvol 24235 |
. . . 4
⊢ ((◡(𝐹 ∘f · 𝐺) “ {𝑦}) ∈ dom vol → (vol‘(◡(𝐹 ∘f · 𝐺) “ {𝑦})) = (vol*‘(◡(𝐹 ∘f · 𝐺) “ {𝑦}))) |
68 | 66, 67 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) →
(vol‘(◡(𝐹 ∘f · 𝐺) “ {𝑦})) = (vol*‘(◡(𝐹 ∘f · 𝐺) “ {𝑦}))) |
69 | | mblss 24236 |
. . . . 5
⊢ ((◡(𝐹 ∘f · 𝐺) “ {𝑦}) ∈ dom vol → (◡(𝐹 ∘f · 𝐺) “ {𝑦}) ⊆ ℝ) |
70 | 66, 69 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) → (◡(𝐹 ∘f · 𝐺) “ {𝑦}) ⊆ ℝ) |
71 | 55 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) → (ran
𝐺 ∖ {0}) ∈
Fin) |
72 | | inss2 4136 |
. . . . . . 7
⊢ ((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) |
73 | 72 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧})) |
74 | 59 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
75 | | mblss 24236 |
. . . . . . 7
⊢ ((◡𝐺 “ {𝑧}) ∈ dom vol → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
76 | 74, 75 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
77 | | mblvol 24235 |
. . . . . . . 8
⊢ ((◡𝐺 “ {𝑧}) ∈ dom vol → (vol‘(◡𝐺 “ {𝑧})) = (vol*‘(◡𝐺 “ {𝑧}))) |
78 | 74, 77 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = (vol*‘(◡𝐺 “ {𝑧}))) |
79 | 6 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) → 𝐺 ∈ dom
∫1) |
80 | | i1fima2sn 24385 |
. . . . . . . 8
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(◡𝐺 “ {𝑧})) ∈ ℝ) |
81 | 79, 80 | sylan 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) ∈ ℝ) |
82 | 78, 81 | eqeltrrd 2853 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(◡𝐺 “ {𝑧})) ∈ ℝ) |
83 | | ovolsscl 24191 |
. . . . . 6
⊢ ((((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) ∧ (◡𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(◡𝐺 “ {𝑧})) ∈ ℝ) →
(vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
84 | 73, 76, 82, 83 | syl3anc 1368 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
85 | 71, 84 | fsumrecl 15144 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) →
Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
86 | 52 | fveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) →
(vol*‘(◡(𝐹 ∘f · 𝐺) “ {𝑦})) = (vol*‘∪ 𝑧 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
87 | | mblss 24236 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol → ((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ) |
88 | 61, 87 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ) |
89 | 88 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ) |
90 | 89, 84 | jca 515 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
91 | 90 | ralrimiva 3113 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) →
∀𝑧 ∈ (ran 𝐺 ∖ {0})(((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) |
92 | | ovolfiniun 24206 |
. . . . . 6
⊢ (((ran
𝐺 ∖ {0}) ∈ Fin
∧ ∀𝑧 ∈ (ran
𝐺 ∖ {0})(((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ)) →
(vol*‘∪ 𝑧 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
93 | 71, 91, 92 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) →
(vol*‘∪ 𝑧 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
94 | 86, 93 | eqbrtrd 5057 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) →
(vol*‘(◡(𝐹 ∘f · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
95 | | ovollecl 24188 |
. . . 4
⊢ (((◡(𝐹 ∘f · 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘(◡(𝐹 ∘f · 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ (ran 𝐺 ∖ {0})(vol*‘((◡𝐹 “ {(𝑦 / 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) → (vol*‘(◡(𝐹 ∘f · 𝐺) “ {𝑦})) ∈ ℝ) |
96 | 70, 85, 94, 95 | syl3anc 1368 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) →
(vol*‘(◡(𝐹 ∘f · 𝐺) “ {𝑦})) ∈ ℝ) |
97 | 68, 96 | eqeltrd 2852 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ (ran (𝐹 ∘f · 𝐺) ∖ {0})) →
(vol‘(◡(𝐹 ∘f · 𝐺) “ {𝑦})) ∈ ℝ) |
98 | 12, 45, 66, 97 | i1fd 24386 |
1
⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ dom
∫1) |