MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yoniso Structured version   Visualization version   GIF version

Theorem yoniso 18237
Description: If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from 𝐢 into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
yoniso.y π‘Œ = (Yonβ€˜πΆ)
yoniso.o 𝑂 = (oppCatβ€˜πΆ)
yoniso.s 𝑆 = (SetCatβ€˜π‘ˆ)
yoniso.d 𝐷 = (CatCatβ€˜π‘‰)
yoniso.b 𝐡 = (Baseβ€˜π·)
yoniso.i 𝐼 = (Isoβ€˜π·)
yoniso.q 𝑄 = (𝑂 FuncCat 𝑆)
yoniso.e 𝐸 = (𝑄 β†Ύs ran (1st β€˜π‘Œ))
yoniso.v (πœ‘ β†’ 𝑉 ∈ 𝑋)
yoniso.c (πœ‘ β†’ 𝐢 ∈ 𝐡)
yoniso.u (πœ‘ β†’ π‘ˆ ∈ π‘Š)
yoniso.h (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
yoniso.eb (πœ‘ β†’ 𝐸 ∈ 𝐡)
yoniso.1 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜(π‘₯(Hom β€˜πΆ)𝑦)) = 𝑦)
Assertion
Ref Expression
yoniso (πœ‘ β†’ π‘Œ ∈ (𝐢𝐼𝐸))
Distinct variable groups:   π‘₯,𝑦,𝐢   𝑦,𝐹   πœ‘,π‘₯,𝑦   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   𝐷(π‘₯,𝑦)   𝑄(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐸(π‘₯,𝑦)   𝐹(π‘₯)   𝐼(π‘₯,𝑦)   𝑂(π‘₯,𝑦)   𝑉(π‘₯,𝑦)   π‘Š(π‘₯,𝑦)   𝑋(π‘₯,𝑦)

Proof of Theorem yoniso
StepHypRef Expression
1 relfunc 17811 . . . 4 Rel (𝐢 Func 𝑄)
2 yoniso.y . . . . 5 π‘Œ = (Yonβ€˜πΆ)
3 yoniso.d . . . . . . . 8 𝐷 = (CatCatβ€˜π‘‰)
4 yoniso.b . . . . . . . 8 𝐡 = (Baseβ€˜π·)
5 yoniso.v . . . . . . . 8 (πœ‘ β†’ 𝑉 ∈ 𝑋)
63, 4, 5catcbas 18050 . . . . . . 7 (πœ‘ β†’ 𝐡 = (𝑉 ∩ Cat))
7 inss2 4229 . . . . . . 7 (𝑉 ∩ Cat) βŠ† Cat
86, 7eqsstrdi 4036 . . . . . 6 (πœ‘ β†’ 𝐡 βŠ† Cat)
9 yoniso.c . . . . . 6 (πœ‘ β†’ 𝐢 ∈ 𝐡)
108, 9sseldd 3983 . . . . 5 (πœ‘ β†’ 𝐢 ∈ Cat)
11 yoniso.o . . . . 5 𝑂 = (oppCatβ€˜πΆ)
12 yoniso.s . . . . 5 𝑆 = (SetCatβ€˜π‘ˆ)
13 yoniso.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
14 yoniso.u . . . . 5 (πœ‘ β†’ π‘ˆ ∈ π‘Š)
15 yoniso.h . . . . 5 (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
162, 10, 11, 12, 13, 14, 15yoncl 18214 . . . 4 (πœ‘ β†’ π‘Œ ∈ (𝐢 Func 𝑄))
17 1st2nd 8024 . . . 4 ((Rel (𝐢 Func 𝑄) ∧ π‘Œ ∈ (𝐢 Func 𝑄)) β†’ π‘Œ = ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩)
181, 16, 17sylancr 587 . . 3 (πœ‘ β†’ π‘Œ = ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩)
192, 11, 12, 13, 10, 14, 15yonffth 18236 . . . . 5 (πœ‘ β†’ π‘Œ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
2018, 19eqeltrrd 2834 . . . 4 (πœ‘ β†’ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
21 eqid 2732 . . . . . 6 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
22 yoniso.e . . . . . 6 𝐸 = (𝑄 β†Ύs ran (1st β€˜π‘Œ))
2311oppccat 17667 . . . . . . . 8 (𝐢 ∈ Cat β†’ 𝑂 ∈ Cat)
2410, 23syl 17 . . . . . . 7 (πœ‘ β†’ 𝑂 ∈ Cat)
2512setccat 18034 . . . . . . . 8 (π‘ˆ ∈ π‘Š β†’ 𝑆 ∈ Cat)
2614, 25syl 17 . . . . . . 7 (πœ‘ β†’ 𝑆 ∈ Cat)
2713, 24, 26fuccat 17922 . . . . . 6 (πœ‘ β†’ 𝑄 ∈ Cat)
28 fvex 6904 . . . . . . . 8 (1st β€˜π‘Œ) ∈ V
2928rnex 7902 . . . . . . 7 ran (1st β€˜π‘Œ) ∈ V
3029a1i 11 . . . . . 6 (πœ‘ β†’ ran (1st β€˜π‘Œ) ∈ V)
3113fucbas 17911 . . . . . . . . 9 (𝑂 Func 𝑆) = (Baseβ€˜π‘„)
32 1st2ndbr 8027 . . . . . . . . . 10 ((Rel (𝐢 Func 𝑄) ∧ π‘Œ ∈ (𝐢 Func 𝑄)) β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
331, 16, 32sylancr 587 . . . . . . . . 9 (πœ‘ β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
3421, 31, 33funcf1 17815 . . . . . . . 8 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)⟢(𝑂 Func 𝑆))
3534ffnd 6718 . . . . . . 7 (πœ‘ β†’ (1st β€˜π‘Œ) Fn (Baseβ€˜πΆ))
36 dffn3 6730 . . . . . . 7 ((1st β€˜π‘Œ) Fn (Baseβ€˜πΆ) ↔ (1st β€˜π‘Œ):(Baseβ€˜πΆ)⟢ran (1st β€˜π‘Œ))
3735, 36sylib 217 . . . . . 6 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)⟢ran (1st β€˜π‘Œ))
3821, 22, 27, 30, 37ffthres2c 17890 . . . . 5 (πœ‘ β†’ ((1st β€˜π‘Œ)((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄))(2nd β€˜π‘Œ) ↔ (1st β€˜π‘Œ)((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸))(2nd β€˜π‘Œ)))
39 df-br 5149 . . . . 5 ((1st β€˜π‘Œ)((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄))(2nd β€˜π‘Œ) ↔ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
40 df-br 5149 . . . . 5 ((1st β€˜π‘Œ)((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸))(2nd β€˜π‘Œ) ↔ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸)))
4138, 39, 403bitr3g 312 . . . 4 (πœ‘ β†’ (⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)) ↔ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸))))
4220, 41mpbid 231 . . 3 (πœ‘ β†’ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸)))
4318, 42eqeltrd 2833 . 2 (πœ‘ β†’ π‘Œ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸)))
44 fveq2 6891 . . . . . . . . 9 (((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘₯)) = (1st β€˜((1st β€˜π‘Œ)β€˜π‘¦)))
4544fveq1d 6893 . . . . . . . 8 (((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯) = ((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯))
4645fveq2d 6895 . . . . . . 7 (((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)))
47 simpl 483 . . . . . . . . . 10 ((π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ)) β†’ π‘₯ ∈ (Baseβ€˜πΆ))
4847, 47jca 512 . . . . . . . . 9 ((π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ)) β†’ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ)))
49 eleq1w 2816 . . . . . . . . . . . . 13 (𝑦 = π‘₯ β†’ (𝑦 ∈ (Baseβ€˜πΆ) ↔ π‘₯ ∈ (Baseβ€˜πΆ)))
5049anbi2d 629 . . . . . . . . . . . 12 (𝑦 = π‘₯ β†’ ((π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ)) ↔ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ))))
5150anbi2d 629 . . . . . . . . . . 11 (𝑦 = π‘₯ β†’ ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) ↔ (πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ)))))
52 2fveq3 6896 . . . . . . . . . . . . . 14 (𝑦 = π‘₯ β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘¦)) = (1st β€˜((1st β€˜π‘Œ)β€˜π‘₯)))
5352fveq1d 6893 . . . . . . . . . . . . 13 (𝑦 = π‘₯ β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯) = ((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯))
5453fveq2d 6895 . . . . . . . . . . . 12 (𝑦 = π‘₯ β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)))
55 id 22 . . . . . . . . . . . 12 (𝑦 = π‘₯ β†’ 𝑦 = π‘₯)
5654, 55eqeq12d 2748 . . . . . . . . . . 11 (𝑦 = π‘₯ β†’ ((πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = 𝑦 ↔ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = π‘₯))
5751, 56imbi12d 344 . . . . . . . . . 10 (𝑦 = π‘₯ β†’ (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = 𝑦) ↔ ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = π‘₯)))
5810adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝐢 ∈ Cat)
59 simprr 771 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝑦 ∈ (Baseβ€˜πΆ))
60 eqid 2732 . . . . . . . . . . . . 13 (Hom β€˜πΆ) = (Hom β€˜πΆ)
61 simprl 769 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ π‘₯ ∈ (Baseβ€˜πΆ))
622, 21, 58, 59, 60, 61yon11 18216 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯) = (π‘₯(Hom β€˜πΆ)𝑦))
6362fveq2d 6895 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = (πΉβ€˜(π‘₯(Hom β€˜πΆ)𝑦)))
64 yoniso.1 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜(π‘₯(Hom β€˜πΆ)𝑦)) = 𝑦)
6563, 64eqtrd 2772 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = 𝑦)
6657, 65chvarvv 2002 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = π‘₯)
6748, 66sylan2 593 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = π‘₯)
6867, 65eqeq12d 2748 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ ((πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) ↔ π‘₯ = 𝑦))
6946, 68imbitrid 243 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ π‘₯ = 𝑦))
7069ralrimivva 3200 . . . . 5 (πœ‘ β†’ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)(((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ π‘₯ = 𝑦))
71 dff13 7253 . . . . 5 ((1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1β†’(𝑂 Func 𝑆) ↔ ((1st β€˜π‘Œ):(Baseβ€˜πΆ)⟢(𝑂 Func 𝑆) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)(((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ π‘₯ = 𝑦)))
7234, 70, 71sylanbrc 583 . . . 4 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1β†’(𝑂 Func 𝑆))
73 f1f1orn 6844 . . . 4 ((1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1β†’(𝑂 Func 𝑆) β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’ran (1st β€˜π‘Œ))
7472, 73syl 17 . . 3 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’ran (1st β€˜π‘Œ))
7534frnd 6725 . . . . 5 (πœ‘ β†’ ran (1st β€˜π‘Œ) βŠ† (𝑂 Func 𝑆))
7622, 31ressbas2 17181 . . . . 5 (ran (1st β€˜π‘Œ) βŠ† (𝑂 Func 𝑆) β†’ ran (1st β€˜π‘Œ) = (Baseβ€˜πΈ))
7775, 76syl 17 . . . 4 (πœ‘ β†’ ran (1st β€˜π‘Œ) = (Baseβ€˜πΈ))
7877f1oeq3d 6830 . . 3 (πœ‘ β†’ ((1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’ran (1st β€˜π‘Œ) ↔ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’(Baseβ€˜πΈ)))
7974, 78mpbid 231 . 2 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’(Baseβ€˜πΈ))
80 eqid 2732 . . 3 (Baseβ€˜πΈ) = (Baseβ€˜πΈ)
81 yoniso.eb . . 3 (πœ‘ β†’ 𝐸 ∈ 𝐡)
82 yoniso.i . . 3 𝐼 = (Isoβ€˜π·)
833, 4, 21, 80, 5, 9, 81, 82catciso 18060 . 2 (πœ‘ β†’ (π‘Œ ∈ (𝐢𝐼𝐸) ↔ (π‘Œ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸)) ∧ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’(Baseβ€˜πΈ))))
8443, 79, 83mpbir2and 711 1 (πœ‘ β†’ π‘Œ ∈ (𝐢𝐼𝐸))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   ∩ cin 3947   βŠ† wss 3948  βŸ¨cop 4634   class class class wbr 5148  ran crn 5677  Rel wrel 5681   Fn wfn 6538  βŸΆwf 6539  β€“1-1β†’wf1 6540  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  Basecbs 17143   β†Ύs cress 17172  Hom chom 17207  Catccat 17607  Homf chomf 17609  oppCatcoppc 17654  Isociso 17692   Func cfunc 17803   Full cful 17852   Faith cfth 17853   FuncCat cfuc 17892  SetCatcsetc 18024  CatCatccatc 18047  Yoncyon 18201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-tpos 8210  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-hom 17220  df-cco 17221  df-cat 17611  df-cid 17612  df-homf 17613  df-comf 17614  df-oppc 17655  df-sect 17693  df-inv 17694  df-iso 17695  df-ssc 17756  df-resc 17757  df-subc 17758  df-func 17807  df-idfu 17808  df-cofu 17809  df-full 17854  df-fth 17855  df-nat 17893  df-fuc 17894  df-setc 18025  df-catc 18048  df-xpc 18123  df-1stf 18124  df-2ndf 18125  df-prf 18126  df-evlf 18165  df-curf 18166  df-hof 18202  df-yon 18203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator