MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yoniso Structured version   Visualization version   GIF version

Theorem yoniso 18253
Description: If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from 𝐶 into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
yoniso.y 𝑌 = (Yon‘𝐶)
yoniso.o 𝑂 = (oppCat‘𝐶)
yoniso.s 𝑆 = (SetCat‘𝑈)
yoniso.d 𝐷 = (CatCat‘𝑉)
yoniso.b 𝐵 = (Base‘𝐷)
yoniso.i 𝐼 = (Iso‘𝐷)
yoniso.q 𝑄 = (𝑂 FuncCat 𝑆)
yoniso.e 𝐸 = (𝑄s ran (1st𝑌))
yoniso.v (𝜑𝑉𝑋)
yoniso.c (𝜑𝐶𝐵)
yoniso.u (𝜑𝑈𝑊)
yoniso.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoniso.eb (𝜑𝐸𝐵)
yoniso.1 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦)
Assertion
Ref Expression
yoniso (𝜑𝑌 ∈ (𝐶𝐼𝐸))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥)   𝐼(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem yoniso
StepHypRef Expression
1 relfunc 17831 . . . 4 Rel (𝐶 Func 𝑄)
2 yoniso.y . . . . 5 𝑌 = (Yon‘𝐶)
3 yoniso.d . . . . . . . 8 𝐷 = (CatCat‘𝑉)
4 yoniso.b . . . . . . . 8 𝐵 = (Base‘𝐷)
5 yoniso.v . . . . . . . 8 (𝜑𝑉𝑋)
63, 4, 5catcbas 18070 . . . . . . 7 (𝜑𝐵 = (𝑉 ∩ Cat))
7 inss2 4204 . . . . . . 7 (𝑉 ∩ Cat) ⊆ Cat
86, 7eqsstrdi 3994 . . . . . 6 (𝜑𝐵 ⊆ Cat)
9 yoniso.c . . . . . 6 (𝜑𝐶𝐵)
108, 9sseldd 3950 . . . . 5 (𝜑𝐶 ∈ Cat)
11 yoniso.o . . . . 5 𝑂 = (oppCat‘𝐶)
12 yoniso.s . . . . 5 𝑆 = (SetCat‘𝑈)
13 yoniso.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
14 yoniso.u . . . . 5 (𝜑𝑈𝑊)
15 yoniso.h . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
162, 10, 11, 12, 13, 14, 15yoncl 18230 . . . 4 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
17 1st2nd 8021 . . . 4 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
181, 16, 17sylancr 587 . . 3 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
192, 11, 12, 13, 10, 14, 15yonffth 18252 . . . . 5 (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
2018, 19eqeltrrd 2830 . . . 4 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
21 eqid 2730 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
22 yoniso.e . . . . . 6 𝐸 = (𝑄s ran (1st𝑌))
2311oppccat 17690 . . . . . . . 8 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
2410, 23syl 17 . . . . . . 7 (𝜑𝑂 ∈ Cat)
2512setccat 18054 . . . . . . . 8 (𝑈𝑊𝑆 ∈ Cat)
2614, 25syl 17 . . . . . . 7 (𝜑𝑆 ∈ Cat)
2713, 24, 26fuccat 17942 . . . . . 6 (𝜑𝑄 ∈ Cat)
28 fvex 6874 . . . . . . . 8 (1st𝑌) ∈ V
2928rnex 7889 . . . . . . 7 ran (1st𝑌) ∈ V
3029a1i 11 . . . . . 6 (𝜑 → ran (1st𝑌) ∈ V)
3113fucbas 17932 . . . . . . . . 9 (𝑂 Func 𝑆) = (Base‘𝑄)
32 1st2ndbr 8024 . . . . . . . . . 10 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
331, 16, 32sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
3421, 31, 33funcf1 17835 . . . . . . . 8 (𝜑 → (1st𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆))
3534ffnd 6692 . . . . . . 7 (𝜑 → (1st𝑌) Fn (Base‘𝐶))
36 dffn3 6703 . . . . . . 7 ((1st𝑌) Fn (Base‘𝐶) ↔ (1st𝑌):(Base‘𝐶)⟶ran (1st𝑌))
3735, 36sylib 218 . . . . . 6 (𝜑 → (1st𝑌):(Base‘𝐶)⟶ran (1st𝑌))
3821, 22, 27, 30, 37ffthres2c 17911 . . . . 5 (𝜑 → ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ (1st𝑌)((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))(2nd𝑌)))
39 df-br 5111 . . . . 5 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
40 df-br 5111 . . . . 5 ((1st𝑌)((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
4138, 39, 403bitr3g 313 . . . 4 (𝜑 → (⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))))
4220, 41mpbid 232 . . 3 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
4318, 42eqeltrd 2829 . 2 (𝜑𝑌 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
44 fveq2 6861 . . . . . . . . 9 (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → (1st ‘((1st𝑌)‘𝑥)) = (1st ‘((1st𝑌)‘𝑦)))
4544fveq1d 6863 . . . . . . . 8 (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → ((1st ‘((1st𝑌)‘𝑥))‘𝑥) = ((1st ‘((1st𝑌)‘𝑦))‘𝑥))
4645fveq2d 6865 . . . . . . 7 (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)))
47 simpl 482 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
4847, 47jca 511 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))
49 eleq1w 2812 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦 ∈ (Base‘𝐶) ↔ 𝑥 ∈ (Base‘𝐶)))
5049anbi2d 630 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))))
5150anbi2d 630 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ↔ (𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))))
52 2fveq3 6866 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (1st ‘((1st𝑌)‘𝑦)) = (1st ‘((1st𝑌)‘𝑥)))
5352fveq1d 6863 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((1st ‘((1st𝑌)‘𝑦))‘𝑥) = ((1st ‘((1st𝑌)‘𝑥))‘𝑥))
5453fveq2d 6865 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)))
55 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑥𝑦 = 𝑥)
5654, 55eqeq12d 2746 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = 𝑦 ↔ (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥))
5751, 56imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝑥 → (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = 𝑦) ↔ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥)))
5810adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
59 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
60 eqid 2730 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
61 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
622, 21, 58, 59, 60, 61yon11 18232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘((1st𝑌)‘𝑦))‘𝑥) = (𝑥(Hom ‘𝐶)𝑦))
6362fveq2d 6865 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = (𝐹‘(𝑥(Hom ‘𝐶)𝑦)))
64 yoniso.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦)
6563, 64eqtrd 2765 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = 𝑦)
6657, 65chvarvv 1989 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥)
6748, 66sylan2 593 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥)
6867, 65eqeq12d 2746 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) ↔ 𝑥 = 𝑦))
6946, 68imbitrid 244 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → 𝑥 = 𝑦))
7069ralrimivva 3181 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → 𝑥 = 𝑦))
71 dff13 7232 . . . . 5 ((1st𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆) ↔ ((1st𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → 𝑥 = 𝑦)))
7234, 70, 71sylanbrc 583 . . . 4 (𝜑 → (1st𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆))
73 f1f1orn 6814 . . . 4 ((1st𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆) → (1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌))
7472, 73syl 17 . . 3 (𝜑 → (1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌))
7534frnd 6699 . . . . 5 (𝜑 → ran (1st𝑌) ⊆ (𝑂 Func 𝑆))
7622, 31ressbas2 17215 . . . . 5 (ran (1st𝑌) ⊆ (𝑂 Func 𝑆) → ran (1st𝑌) = (Base‘𝐸))
7775, 76syl 17 . . . 4 (𝜑 → ran (1st𝑌) = (Base‘𝐸))
7877f1oeq3d 6800 . . 3 (𝜑 → ((1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌) ↔ (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸)))
7974, 78mpbid 232 . 2 (𝜑 → (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸))
80 eqid 2730 . . 3 (Base‘𝐸) = (Base‘𝐸)
81 yoniso.eb . . 3 (𝜑𝐸𝐵)
82 yoniso.i . . 3 𝐼 = (Iso‘𝐷)
833, 4, 21, 80, 5, 9, 81, 82catciso 18080 . 2 (𝜑 → (𝑌 ∈ (𝐶𝐼𝐸) ↔ (𝑌 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)) ∧ (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸))))
8443, 79, 83mpbir2and 713 1 (𝜑𝑌 ∈ (𝐶𝐼𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cin 3916  wss 3917  cop 4598   class class class wbr 5110  ran crn 5642  Rel wrel 5646   Fn wfn 6509  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  s cress 17207  Hom chom 17238  Catccat 17632  Homf chomf 17634  oppCatcoppc 17679  Isociso 17715   Func cfunc 17823   Full cful 17873   Faith cfth 17874   FuncCat cfuc 17914  SetCatcsetc 18044  CatCatccatc 18067  Yoncyon 18217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-homf 17638  df-comf 17639  df-oppc 17680  df-sect 17716  df-inv 17717  df-iso 17718  df-ssc 17779  df-resc 17780  df-subc 17781  df-func 17827  df-idfu 17828  df-cofu 17829  df-full 17875  df-fth 17876  df-nat 17915  df-fuc 17916  df-setc 18045  df-catc 18068  df-xpc 18140  df-1stf 18141  df-2ndf 18142  df-prf 18143  df-evlf 18181  df-curf 18182  df-hof 18218  df-yon 18219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator