MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yoniso Structured version   Visualization version   GIF version

Theorem yoniso 18242
Description: If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from 𝐢 into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
yoniso.y π‘Œ = (Yonβ€˜πΆ)
yoniso.o 𝑂 = (oppCatβ€˜πΆ)
yoniso.s 𝑆 = (SetCatβ€˜π‘ˆ)
yoniso.d 𝐷 = (CatCatβ€˜π‘‰)
yoniso.b 𝐡 = (Baseβ€˜π·)
yoniso.i 𝐼 = (Isoβ€˜π·)
yoniso.q 𝑄 = (𝑂 FuncCat 𝑆)
yoniso.e 𝐸 = (𝑄 β†Ύs ran (1st β€˜π‘Œ))
yoniso.v (πœ‘ β†’ 𝑉 ∈ 𝑋)
yoniso.c (πœ‘ β†’ 𝐢 ∈ 𝐡)
yoniso.u (πœ‘ β†’ π‘ˆ ∈ π‘Š)
yoniso.h (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
yoniso.eb (πœ‘ β†’ 𝐸 ∈ 𝐡)
yoniso.1 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜(π‘₯(Hom β€˜πΆ)𝑦)) = 𝑦)
Assertion
Ref Expression
yoniso (πœ‘ β†’ π‘Œ ∈ (𝐢𝐼𝐸))
Distinct variable groups:   π‘₯,𝑦,𝐢   𝑦,𝐹   πœ‘,π‘₯,𝑦   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   𝐷(π‘₯,𝑦)   𝑄(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐸(π‘₯,𝑦)   𝐹(π‘₯)   𝐼(π‘₯,𝑦)   𝑂(π‘₯,𝑦)   𝑉(π‘₯,𝑦)   π‘Š(π‘₯,𝑦)   𝑋(π‘₯,𝑦)

Proof of Theorem yoniso
StepHypRef Expression
1 relfunc 17816 . . . 4 Rel (𝐢 Func 𝑄)
2 yoniso.y . . . . 5 π‘Œ = (Yonβ€˜πΆ)
3 yoniso.d . . . . . . . 8 𝐷 = (CatCatβ€˜π‘‰)
4 yoniso.b . . . . . . . 8 𝐡 = (Baseβ€˜π·)
5 yoniso.v . . . . . . . 8 (πœ‘ β†’ 𝑉 ∈ 𝑋)
63, 4, 5catcbas 18055 . . . . . . 7 (πœ‘ β†’ 𝐡 = (𝑉 ∩ Cat))
7 inss2 4229 . . . . . . 7 (𝑉 ∩ Cat) βŠ† Cat
86, 7eqsstrdi 4036 . . . . . 6 (πœ‘ β†’ 𝐡 βŠ† Cat)
9 yoniso.c . . . . . 6 (πœ‘ β†’ 𝐢 ∈ 𝐡)
108, 9sseldd 3983 . . . . 5 (πœ‘ β†’ 𝐢 ∈ Cat)
11 yoniso.o . . . . 5 𝑂 = (oppCatβ€˜πΆ)
12 yoniso.s . . . . 5 𝑆 = (SetCatβ€˜π‘ˆ)
13 yoniso.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
14 yoniso.u . . . . 5 (πœ‘ β†’ π‘ˆ ∈ π‘Š)
15 yoniso.h . . . . 5 (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
162, 10, 11, 12, 13, 14, 15yoncl 18219 . . . 4 (πœ‘ β†’ π‘Œ ∈ (𝐢 Func 𝑄))
17 1st2nd 8027 . . . 4 ((Rel (𝐢 Func 𝑄) ∧ π‘Œ ∈ (𝐢 Func 𝑄)) β†’ π‘Œ = ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩)
181, 16, 17sylancr 587 . . 3 (πœ‘ β†’ π‘Œ = ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩)
192, 11, 12, 13, 10, 14, 15yonffth 18241 . . . . 5 (πœ‘ β†’ π‘Œ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
2018, 19eqeltrrd 2834 . . . 4 (πœ‘ β†’ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
21 eqid 2732 . . . . . 6 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
22 yoniso.e . . . . . 6 𝐸 = (𝑄 β†Ύs ran (1st β€˜π‘Œ))
2311oppccat 17672 . . . . . . . 8 (𝐢 ∈ Cat β†’ 𝑂 ∈ Cat)
2410, 23syl 17 . . . . . . 7 (πœ‘ β†’ 𝑂 ∈ Cat)
2512setccat 18039 . . . . . . . 8 (π‘ˆ ∈ π‘Š β†’ 𝑆 ∈ Cat)
2614, 25syl 17 . . . . . . 7 (πœ‘ β†’ 𝑆 ∈ Cat)
2713, 24, 26fuccat 17927 . . . . . 6 (πœ‘ β†’ 𝑄 ∈ Cat)
28 fvex 6904 . . . . . . . 8 (1st β€˜π‘Œ) ∈ V
2928rnex 7905 . . . . . . 7 ran (1st β€˜π‘Œ) ∈ V
3029a1i 11 . . . . . 6 (πœ‘ β†’ ran (1st β€˜π‘Œ) ∈ V)
3113fucbas 17916 . . . . . . . . 9 (𝑂 Func 𝑆) = (Baseβ€˜π‘„)
32 1st2ndbr 8030 . . . . . . . . . 10 ((Rel (𝐢 Func 𝑄) ∧ π‘Œ ∈ (𝐢 Func 𝑄)) β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
331, 16, 32sylancr 587 . . . . . . . . 9 (πœ‘ β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
3421, 31, 33funcf1 17820 . . . . . . . 8 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)⟢(𝑂 Func 𝑆))
3534ffnd 6718 . . . . . . 7 (πœ‘ β†’ (1st β€˜π‘Œ) Fn (Baseβ€˜πΆ))
36 dffn3 6730 . . . . . . 7 ((1st β€˜π‘Œ) Fn (Baseβ€˜πΆ) ↔ (1st β€˜π‘Œ):(Baseβ€˜πΆ)⟢ran (1st β€˜π‘Œ))
3735, 36sylib 217 . . . . . 6 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)⟢ran (1st β€˜π‘Œ))
3821, 22, 27, 30, 37ffthres2c 17895 . . . . 5 (πœ‘ β†’ ((1st β€˜π‘Œ)((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄))(2nd β€˜π‘Œ) ↔ (1st β€˜π‘Œ)((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸))(2nd β€˜π‘Œ)))
39 df-br 5149 . . . . 5 ((1st β€˜π‘Œ)((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄))(2nd β€˜π‘Œ) ↔ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
40 df-br 5149 . . . . 5 ((1st β€˜π‘Œ)((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸))(2nd β€˜π‘Œ) ↔ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸)))
4138, 39, 403bitr3g 312 . . . 4 (πœ‘ β†’ (⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)) ↔ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸))))
4220, 41mpbid 231 . . 3 (πœ‘ β†’ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸)))
4318, 42eqeltrd 2833 . 2 (πœ‘ β†’ π‘Œ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸)))
44 fveq2 6891 . . . . . . . . 9 (((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘₯)) = (1st β€˜((1st β€˜π‘Œ)β€˜π‘¦)))
4544fveq1d 6893 . . . . . . . 8 (((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯) = ((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯))
4645fveq2d 6895 . . . . . . 7 (((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)))
47 simpl 483 . . . . . . . . . 10 ((π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ)) β†’ π‘₯ ∈ (Baseβ€˜πΆ))
4847, 47jca 512 . . . . . . . . 9 ((π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ)) β†’ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ)))
49 eleq1w 2816 . . . . . . . . . . . . 13 (𝑦 = π‘₯ β†’ (𝑦 ∈ (Baseβ€˜πΆ) ↔ π‘₯ ∈ (Baseβ€˜πΆ)))
5049anbi2d 629 . . . . . . . . . . . 12 (𝑦 = π‘₯ β†’ ((π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ)) ↔ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ))))
5150anbi2d 629 . . . . . . . . . . 11 (𝑦 = π‘₯ β†’ ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) ↔ (πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ)))))
52 2fveq3 6896 . . . . . . . . . . . . . 14 (𝑦 = π‘₯ β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘¦)) = (1st β€˜((1st β€˜π‘Œ)β€˜π‘₯)))
5352fveq1d 6893 . . . . . . . . . . . . 13 (𝑦 = π‘₯ β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯) = ((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯))
5453fveq2d 6895 . . . . . . . . . . . 12 (𝑦 = π‘₯ β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)))
55 id 22 . . . . . . . . . . . 12 (𝑦 = π‘₯ β†’ 𝑦 = π‘₯)
5654, 55eqeq12d 2748 . . . . . . . . . . 11 (𝑦 = π‘₯ β†’ ((πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = 𝑦 ↔ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = π‘₯))
5751, 56imbi12d 344 . . . . . . . . . 10 (𝑦 = π‘₯ β†’ (((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = 𝑦) ↔ ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = π‘₯)))
5810adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝐢 ∈ Cat)
59 simprr 771 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ 𝑦 ∈ (Baseβ€˜πΆ))
60 eqid 2732 . . . . . . . . . . . . 13 (Hom β€˜πΆ) = (Hom β€˜πΆ)
61 simprl 769 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ π‘₯ ∈ (Baseβ€˜πΆ))
622, 21, 58, 59, 60, 61yon11 18221 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯) = (π‘₯(Hom β€˜πΆ)𝑦))
6362fveq2d 6895 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = (πΉβ€˜(π‘₯(Hom β€˜πΆ)𝑦)))
64 yoniso.1 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜(π‘₯(Hom β€˜πΆ)𝑦)) = 𝑦)
6563, 64eqtrd 2772 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) = 𝑦)
6657, 65chvarvv 2002 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ π‘₯ ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = π‘₯)
6748, 66sylan2 593 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = π‘₯)
6867, 65eqeq12d 2748 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ ((πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘₯))β€˜π‘₯)) = (πΉβ€˜((1st β€˜((1st β€˜π‘Œ)β€˜π‘¦))β€˜π‘₯)) ↔ π‘₯ = 𝑦))
6946, 68imbitrid 243 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΆ) ∧ 𝑦 ∈ (Baseβ€˜πΆ))) β†’ (((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ π‘₯ = 𝑦))
7069ralrimivva 3200 . . . . 5 (πœ‘ β†’ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)(((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ π‘₯ = 𝑦))
71 dff13 7256 . . . . 5 ((1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1β†’(𝑂 Func 𝑆) ↔ ((1st β€˜π‘Œ):(Baseβ€˜πΆ)⟢(𝑂 Func 𝑆) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)βˆ€π‘¦ ∈ (Baseβ€˜πΆ)(((1st β€˜π‘Œ)β€˜π‘₯) = ((1st β€˜π‘Œ)β€˜π‘¦) β†’ π‘₯ = 𝑦)))
7234, 70, 71sylanbrc 583 . . . 4 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1β†’(𝑂 Func 𝑆))
73 f1f1orn 6844 . . . 4 ((1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1β†’(𝑂 Func 𝑆) β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’ran (1st β€˜π‘Œ))
7472, 73syl 17 . . 3 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’ran (1st β€˜π‘Œ))
7534frnd 6725 . . . . 5 (πœ‘ β†’ ran (1st β€˜π‘Œ) βŠ† (𝑂 Func 𝑆))
7622, 31ressbas2 17186 . . . . 5 (ran (1st β€˜π‘Œ) βŠ† (𝑂 Func 𝑆) β†’ ran (1st β€˜π‘Œ) = (Baseβ€˜πΈ))
7775, 76syl 17 . . . 4 (πœ‘ β†’ ran (1st β€˜π‘Œ) = (Baseβ€˜πΈ))
7877f1oeq3d 6830 . . 3 (πœ‘ β†’ ((1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’ran (1st β€˜π‘Œ) ↔ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’(Baseβ€˜πΈ)))
7974, 78mpbid 231 . 2 (πœ‘ β†’ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’(Baseβ€˜πΈ))
80 eqid 2732 . . 3 (Baseβ€˜πΈ) = (Baseβ€˜πΈ)
81 yoniso.eb . . 3 (πœ‘ β†’ 𝐸 ∈ 𝐡)
82 yoniso.i . . 3 𝐼 = (Isoβ€˜π·)
833, 4, 21, 80, 5, 9, 81, 82catciso 18065 . 2 (πœ‘ β†’ (π‘Œ ∈ (𝐢𝐼𝐸) ↔ (π‘Œ ∈ ((𝐢 Full 𝐸) ∩ (𝐢 Faith 𝐸)) ∧ (1st β€˜π‘Œ):(Baseβ€˜πΆ)–1-1-ontoβ†’(Baseβ€˜πΈ))))
8443, 79, 83mpbir2and 711 1 (πœ‘ β†’ π‘Œ ∈ (𝐢𝐼𝐸))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   ∩ cin 3947   βŠ† wss 3948  βŸ¨cop 4634   class class class wbr 5148  ran crn 5677  Rel wrel 5681   Fn wfn 6538  βŸΆwf 6539  β€“1-1β†’wf1 6540  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  Basecbs 17148   β†Ύs cress 17177  Hom chom 17212  Catccat 17612  Homf chomf 17614  oppCatcoppc 17659  Isociso 17697   Func cfunc 17808   Full cful 17857   Faith cfth 17858   FuncCat cfuc 17897  SetCatcsetc 18029  CatCatccatc 18052  Yoncyon 18206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-hom 17225  df-cco 17226  df-cat 17616  df-cid 17617  df-homf 17618  df-comf 17619  df-oppc 17660  df-sect 17698  df-inv 17699  df-iso 17700  df-ssc 17761  df-resc 17762  df-subc 17763  df-func 17812  df-idfu 17813  df-cofu 17814  df-full 17859  df-fth 17860  df-nat 17898  df-fuc 17899  df-setc 18030  df-catc 18053  df-xpc 18128  df-1stf 18129  df-2ndf 18130  df-prf 18131  df-evlf 18170  df-curf 18171  df-hof 18207  df-yon 18208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator