MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yoniso Structured version   Visualization version   GIF version

Theorem yoniso 18003
Description: If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from 𝐶 into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
yoniso.y 𝑌 = (Yon‘𝐶)
yoniso.o 𝑂 = (oppCat‘𝐶)
yoniso.s 𝑆 = (SetCat‘𝑈)
yoniso.d 𝐷 = (CatCat‘𝑉)
yoniso.b 𝐵 = (Base‘𝐷)
yoniso.i 𝐼 = (Iso‘𝐷)
yoniso.q 𝑄 = (𝑂 FuncCat 𝑆)
yoniso.e 𝐸 = (𝑄s ran (1st𝑌))
yoniso.v (𝜑𝑉𝑋)
yoniso.c (𝜑𝐶𝐵)
yoniso.u (𝜑𝑈𝑊)
yoniso.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoniso.eb (𝜑𝐸𝐵)
yoniso.1 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦)
Assertion
Ref Expression
yoniso (𝜑𝑌 ∈ (𝐶𝐼𝐸))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥)   𝐼(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem yoniso
StepHypRef Expression
1 relfunc 17577 . . . 4 Rel (𝐶 Func 𝑄)
2 yoniso.y . . . . 5 𝑌 = (Yon‘𝐶)
3 yoniso.d . . . . . . . 8 𝐷 = (CatCat‘𝑉)
4 yoniso.b . . . . . . . 8 𝐵 = (Base‘𝐷)
5 yoniso.v . . . . . . . 8 (𝜑𝑉𝑋)
63, 4, 5catcbas 17816 . . . . . . 7 (𝜑𝐵 = (𝑉 ∩ Cat))
7 inss2 4163 . . . . . . 7 (𝑉 ∩ Cat) ⊆ Cat
86, 7eqsstrdi 3975 . . . . . 6 (𝜑𝐵 ⊆ Cat)
9 yoniso.c . . . . . 6 (𝜑𝐶𝐵)
108, 9sseldd 3922 . . . . 5 (𝜑𝐶 ∈ Cat)
11 yoniso.o . . . . 5 𝑂 = (oppCat‘𝐶)
12 yoniso.s . . . . 5 𝑆 = (SetCat‘𝑈)
13 yoniso.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
14 yoniso.u . . . . 5 (𝜑𝑈𝑊)
15 yoniso.h . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
162, 10, 11, 12, 13, 14, 15yoncl 17980 . . . 4 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
17 1st2nd 7880 . . . 4 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
181, 16, 17sylancr 587 . . 3 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
192, 11, 12, 13, 10, 14, 15yonffth 18002 . . . . 5 (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
2018, 19eqeltrrd 2840 . . . 4 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
21 eqid 2738 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
22 yoniso.e . . . . . 6 𝐸 = (𝑄s ran (1st𝑌))
2311oppccat 17433 . . . . . . . 8 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
2410, 23syl 17 . . . . . . 7 (𝜑𝑂 ∈ Cat)
2512setccat 17800 . . . . . . . 8 (𝑈𝑊𝑆 ∈ Cat)
2614, 25syl 17 . . . . . . 7 (𝜑𝑆 ∈ Cat)
2713, 24, 26fuccat 17688 . . . . . 6 (𝜑𝑄 ∈ Cat)
28 fvex 6787 . . . . . . . 8 (1st𝑌) ∈ V
2928rnex 7759 . . . . . . 7 ran (1st𝑌) ∈ V
3029a1i 11 . . . . . 6 (𝜑 → ran (1st𝑌) ∈ V)
3113fucbas 17677 . . . . . . . . 9 (𝑂 Func 𝑆) = (Base‘𝑄)
32 1st2ndbr 7883 . . . . . . . . . 10 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
331, 16, 32sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
3421, 31, 33funcf1 17581 . . . . . . . 8 (𝜑 → (1st𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆))
3534ffnd 6601 . . . . . . 7 (𝜑 → (1st𝑌) Fn (Base‘𝐶))
36 dffn3 6613 . . . . . . 7 ((1st𝑌) Fn (Base‘𝐶) ↔ (1st𝑌):(Base‘𝐶)⟶ran (1st𝑌))
3735, 36sylib 217 . . . . . 6 (𝜑 → (1st𝑌):(Base‘𝐶)⟶ran (1st𝑌))
3821, 22, 27, 30, 37ffthres2c 17656 . . . . 5 (𝜑 → ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ (1st𝑌)((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))(2nd𝑌)))
39 df-br 5075 . . . . 5 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
40 df-br 5075 . . . . 5 ((1st𝑌)((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
4138, 39, 403bitr3g 313 . . . 4 (𝜑 → (⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))))
4220, 41mpbid 231 . . 3 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
4318, 42eqeltrd 2839 . 2 (𝜑𝑌 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
44 fveq2 6774 . . . . . . . . 9 (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → (1st ‘((1st𝑌)‘𝑥)) = (1st ‘((1st𝑌)‘𝑦)))
4544fveq1d 6776 . . . . . . . 8 (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → ((1st ‘((1st𝑌)‘𝑥))‘𝑥) = ((1st ‘((1st𝑌)‘𝑦))‘𝑥))
4645fveq2d 6778 . . . . . . 7 (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)))
47 simpl 483 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
4847, 47jca 512 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))
49 eleq1w 2821 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦 ∈ (Base‘𝐶) ↔ 𝑥 ∈ (Base‘𝐶)))
5049anbi2d 629 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))))
5150anbi2d 629 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ↔ (𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))))
52 2fveq3 6779 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (1st ‘((1st𝑌)‘𝑦)) = (1st ‘((1st𝑌)‘𝑥)))
5352fveq1d 6776 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((1st ‘((1st𝑌)‘𝑦))‘𝑥) = ((1st ‘((1st𝑌)‘𝑥))‘𝑥))
5453fveq2d 6778 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)))
55 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑥𝑦 = 𝑥)
5654, 55eqeq12d 2754 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = 𝑦 ↔ (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥))
5751, 56imbi12d 345 . . . . . . . . . 10 (𝑦 = 𝑥 → (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = 𝑦) ↔ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥)))
5810adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
59 simprr 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
60 eqid 2738 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
61 simprl 768 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
622, 21, 58, 59, 60, 61yon11 17982 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘((1st𝑌)‘𝑦))‘𝑥) = (𝑥(Hom ‘𝐶)𝑦))
6362fveq2d 6778 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = (𝐹‘(𝑥(Hom ‘𝐶)𝑦)))
64 yoniso.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦)
6563, 64eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = 𝑦)
6657, 65chvarvv 2002 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥)
6748, 66sylan2 593 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥)
6867, 65eqeq12d 2754 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) ↔ 𝑥 = 𝑦))
6946, 68syl5ib 243 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → 𝑥 = 𝑦))
7069ralrimivva 3123 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → 𝑥 = 𝑦))
71 dff13 7128 . . . . 5 ((1st𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆) ↔ ((1st𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → 𝑥 = 𝑦)))
7234, 70, 71sylanbrc 583 . . . 4 (𝜑 → (1st𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆))
73 f1f1orn 6727 . . . 4 ((1st𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆) → (1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌))
7472, 73syl 17 . . 3 (𝜑 → (1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌))
7534frnd 6608 . . . . 5 (𝜑 → ran (1st𝑌) ⊆ (𝑂 Func 𝑆))
7622, 31ressbas2 16949 . . . . 5 (ran (1st𝑌) ⊆ (𝑂 Func 𝑆) → ran (1st𝑌) = (Base‘𝐸))
7775, 76syl 17 . . . 4 (𝜑 → ran (1st𝑌) = (Base‘𝐸))
7877f1oeq3d 6713 . . 3 (𝜑 → ((1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌) ↔ (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸)))
7974, 78mpbid 231 . 2 (𝜑 → (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸))
80 eqid 2738 . . 3 (Base‘𝐸) = (Base‘𝐸)
81 yoniso.eb . . 3 (𝜑𝐸𝐵)
82 yoniso.i . . 3 𝐼 = (Iso‘𝐷)
833, 4, 21, 80, 5, 9, 81, 82catciso 17826 . 2 (𝜑 → (𝑌 ∈ (𝐶𝐼𝐸) ↔ (𝑌 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)) ∧ (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸))))
8443, 79, 83mpbir2and 710 1 (𝜑𝑌 ∈ (𝐶𝐼𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cin 3886  wss 3887  cop 4567   class class class wbr 5074  ran crn 5590  Rel wrel 5594   Fn wfn 6428  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  s cress 16941  Hom chom 16973  Catccat 17373  Homf chomf 17375  oppCatcoppc 17420  Isociso 17458   Func cfunc 17569   Full cful 17618   Faith cfth 17619   FuncCat cfuc 17658  SetCatcsetc 17790  CatCatccatc 17813  Yoncyon 17967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-homf 17379  df-comf 17380  df-oppc 17421  df-sect 17459  df-inv 17460  df-iso 17461  df-ssc 17522  df-resc 17523  df-subc 17524  df-func 17573  df-idfu 17574  df-cofu 17575  df-full 17620  df-fth 17621  df-nat 17659  df-fuc 17660  df-setc 17791  df-catc 17814  df-xpc 17889  df-1stf 17890  df-2ndf 17891  df-prf 17892  df-evlf 17931  df-curf 17932  df-hof 17968  df-yon 17969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator