Proof of Theorem yoniso
Step | Hyp | Ref
| Expression |
1 | | relfunc 17566 |
. . . 4
⊢ Rel
(𝐶 Func 𝑄) |
2 | | yoniso.y |
. . . . 5
⊢ 𝑌 = (Yon‘𝐶) |
3 | | yoniso.d |
. . . . . . . 8
⊢ 𝐷 = (CatCat‘𝑉) |
4 | | yoniso.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐷) |
5 | | yoniso.v |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ 𝑋) |
6 | 3, 4, 5 | catcbas 17805 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (𝑉 ∩ Cat)) |
7 | | inss2 4165 |
. . . . . . 7
⊢ (𝑉 ∩ Cat) ⊆
Cat |
8 | 6, 7 | eqsstrdi 3976 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ Cat) |
9 | | yoniso.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
10 | 8, 9 | sseldd 3923 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
11 | | yoniso.o |
. . . . 5
⊢ 𝑂 = (oppCat‘𝐶) |
12 | | yoniso.s |
. . . . 5
⊢ 𝑆 = (SetCat‘𝑈) |
13 | | yoniso.q |
. . . . 5
⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
14 | | yoniso.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝑊) |
15 | | yoniso.h |
. . . . 5
⊢ (𝜑 → ran
(Homf ‘𝐶) ⊆ 𝑈) |
16 | 2, 10, 11, 12, 13, 14, 15 | yoncl 17969 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝑄)) |
17 | | 1st2nd 7871 |
. . . 4
⊢ ((Rel
(𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
18 | 1, 16, 17 | sylancr 587 |
. . 3
⊢ (𝜑 → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
19 | 2, 11, 12, 13, 10, 14, 15 | yonffth 17991 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
20 | 18, 19 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → 〈(1st
‘𝑌), (2nd
‘𝑌)〉 ∈
((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
21 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
22 | | yoniso.e |
. . . . . 6
⊢ 𝐸 = (𝑄 ↾s ran (1st
‘𝑌)) |
23 | 11 | oppccat 17422 |
. . . . . . . 8
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
24 | 10, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ Cat) |
25 | 12 | setccat 17789 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑊 → 𝑆 ∈ Cat) |
26 | 14, 25 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Cat) |
27 | 13, 24, 26 | fuccat 17677 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ Cat) |
28 | | fvex 6781 |
. . . . . . . 8
⊢
(1st ‘𝑌) ∈ V |
29 | 28 | rnex 7751 |
. . . . . . 7
⊢ ran
(1st ‘𝑌)
∈ V |
30 | 29 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ran (1st
‘𝑌) ∈
V) |
31 | 13 | fucbas 17666 |
. . . . . . . . 9
⊢ (𝑂 Func 𝑆) = (Base‘𝑄) |
32 | | 1st2ndbr 7874 |
. . . . . . . . . 10
⊢ ((Rel
(𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st ‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) |
33 | 1, 16, 32 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) |
34 | 21, 31, 33 | funcf1 17570 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆)) |
35 | 34 | ffnd 6595 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝑌) Fn
(Base‘𝐶)) |
36 | | dffn3 6607 |
. . . . . . 7
⊢
((1st ‘𝑌) Fn (Base‘𝐶) ↔ (1st ‘𝑌):(Base‘𝐶)⟶ran (1st ‘𝑌)) |
37 | 35, 36 | sylib 217 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝑌):(Base‘𝐶)⟶ran (1st
‘𝑌)) |
38 | 21, 22, 27, 30, 37 | ffthres2c 17645 |
. . . . 5
⊢ (𝜑 → ((1st
‘𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd ‘𝑌) ↔ (1st ‘𝑌)((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))(2nd ‘𝑌))) |
39 | | df-br 5076 |
. . . . 5
⊢
((1st ‘𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd ‘𝑌) ↔ 〈(1st ‘𝑌), (2nd ‘𝑌)〉 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
40 | | df-br 5076 |
. . . . 5
⊢
((1st ‘𝑌)((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))(2nd ‘𝑌) ↔ 〈(1st ‘𝑌), (2nd ‘𝑌)〉 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))) |
41 | 38, 39, 40 | 3bitr3g 313 |
. . . 4
⊢ (𝜑 → (〈(1st
‘𝑌), (2nd
‘𝑌)〉 ∈
((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)) ↔ 〈(1st ‘𝑌), (2nd ‘𝑌)〉 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))) |
42 | 20, 41 | mpbid 231 |
. . 3
⊢ (𝜑 → 〈(1st
‘𝑌), (2nd
‘𝑌)〉 ∈
((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))) |
43 | 18, 42 | eqeltrd 2839 |
. 2
⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))) |
44 | | fveq2 6768 |
. . . . . . . . 9
⊢
(((1st ‘𝑌)‘𝑥) = ((1st ‘𝑌)‘𝑦) → (1st
‘((1st ‘𝑌)‘𝑥)) = (1st ‘((1st
‘𝑌)‘𝑦))) |
45 | 44 | fveq1d 6770 |
. . . . . . . 8
⊢
(((1st ‘𝑌)‘𝑥) = ((1st ‘𝑌)‘𝑦) → ((1st
‘((1st ‘𝑌)‘𝑥))‘𝑥) = ((1st ‘((1st
‘𝑌)‘𝑦))‘𝑥)) |
46 | 45 | fveq2d 6772 |
. . . . . . 7
⊢
(((1st ‘𝑌)‘𝑥) = ((1st ‘𝑌)‘𝑦) → (𝐹‘((1st
‘((1st ‘𝑌)‘𝑥))‘𝑥)) = (𝐹‘((1st
‘((1st ‘𝑌)‘𝑦))‘𝑥))) |
47 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
48 | 47, 47 | jca 512 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) |
49 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑦 ∈ (Base‘𝐶) ↔ 𝑥 ∈ (Base‘𝐶))) |
50 | 49 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))) |
51 | 50 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ↔ (𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))))) |
52 | | 2fveq3 6773 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (1st
‘((1st ‘𝑌)‘𝑦)) = (1st ‘((1st
‘𝑌)‘𝑥))) |
53 | 52 | fveq1d 6770 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → ((1st
‘((1st ‘𝑌)‘𝑦))‘𝑥) = ((1st ‘((1st
‘𝑌)‘𝑥))‘𝑥)) |
54 | 53 | fveq2d 6772 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝐹‘((1st
‘((1st ‘𝑌)‘𝑦))‘𝑥)) = (𝐹‘((1st
‘((1st ‘𝑌)‘𝑥))‘𝑥))) |
55 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
56 | 54, 55 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((𝐹‘((1st
‘((1st ‘𝑌)‘𝑦))‘𝑥)) = 𝑦 ↔ (𝐹‘((1st
‘((1st ‘𝑌)‘𝑥))‘𝑥)) = 𝑥)) |
57 | 51, 56 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st
‘((1st ‘𝑌)‘𝑦))‘𝑥)) = 𝑦) ↔ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝐹‘((1st
‘((1st ‘𝑌)‘𝑥))‘𝑥)) = 𝑥))) |
58 | 10 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
59 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
60 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
61 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
62 | 2, 21, 58, 59, 60, 61 | yon11 17971 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st
‘((1st ‘𝑌)‘𝑦))‘𝑥) = (𝑥(Hom ‘𝐶)𝑦)) |
63 | 62 | fveq2d 6772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st
‘((1st ‘𝑌)‘𝑦))‘𝑥)) = (𝐹‘(𝑥(Hom ‘𝐶)𝑦))) |
64 | | yoniso.1 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦) |
65 | 63, 64 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st
‘((1st ‘𝑌)‘𝑦))‘𝑥)) = 𝑦) |
66 | 57, 65 | chvarvv 2002 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝐹‘((1st
‘((1st ‘𝑌)‘𝑥))‘𝑥)) = 𝑥) |
67 | 48, 66 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st
‘((1st ‘𝑌)‘𝑥))‘𝑥)) = 𝑥) |
68 | 67, 65 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝐹‘((1st
‘((1st ‘𝑌)‘𝑥))‘𝑥)) = (𝐹‘((1st
‘((1st ‘𝑌)‘𝑦))‘𝑥)) ↔ 𝑥 = 𝑦)) |
69 | 46, 68 | syl5ib 243 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘𝑌)‘𝑥) = ((1st ‘𝑌)‘𝑦) → 𝑥 = 𝑦)) |
70 | 69 | ralrimivva 3111 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((1st ‘𝑌)‘𝑥) = ((1st ‘𝑌)‘𝑦) → 𝑥 = 𝑦)) |
71 | | dff13 7122 |
. . . . 5
⊢
((1st ‘𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆) ↔ ((1st ‘𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((1st ‘𝑌)‘𝑥) = ((1st ‘𝑌)‘𝑦) → 𝑥 = 𝑦))) |
72 | 34, 70, 71 | sylanbrc 583 |
. . . 4
⊢ (𝜑 → (1st
‘𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆)) |
73 | | f1f1orn 6721 |
. . . 4
⊢
((1st ‘𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆) → (1st ‘𝑌):(Base‘𝐶)–1-1-onto→ran
(1st ‘𝑌)) |
74 | 72, 73 | syl 17 |
. . 3
⊢ (𝜑 → (1st
‘𝑌):(Base‘𝐶)–1-1-onto→ran
(1st ‘𝑌)) |
75 | 34 | frnd 6602 |
. . . . 5
⊢ (𝜑 → ran (1st
‘𝑌) ⊆ (𝑂 Func 𝑆)) |
76 | 22, 31 | ressbas2 16938 |
. . . . 5
⊢ (ran
(1st ‘𝑌)
⊆ (𝑂 Func 𝑆) → ran (1st
‘𝑌) =
(Base‘𝐸)) |
77 | 75, 76 | syl 17 |
. . . 4
⊢ (𝜑 → ran (1st
‘𝑌) =
(Base‘𝐸)) |
78 | 77 | f1oeq3d 6707 |
. . 3
⊢ (𝜑 → ((1st
‘𝑌):(Base‘𝐶)–1-1-onto→ran
(1st ‘𝑌)
↔ (1st ‘𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸))) |
79 | 74, 78 | mpbid 231 |
. 2
⊢ (𝜑 → (1st
‘𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸)) |
80 | | eqid 2738 |
. . 3
⊢
(Base‘𝐸) =
(Base‘𝐸) |
81 | | yoniso.eb |
. . 3
⊢ (𝜑 → 𝐸 ∈ 𝐵) |
82 | | yoniso.i |
. . 3
⊢ 𝐼 = (Iso‘𝐷) |
83 | 3, 4, 21, 80, 5, 9, 81, 82 | catciso 17815 |
. 2
⊢ (𝜑 → (𝑌 ∈ (𝐶𝐼𝐸) ↔ (𝑌 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)) ∧ (1st ‘𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸)))) |
84 | 43, 79, 83 | mpbir2and 710 |
1
⊢ (𝜑 → 𝑌 ∈ (𝐶𝐼𝐸)) |