Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsn2 | Structured version Visualization version GIF version |
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
Ref | Expression |
---|---|
fsn2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fsn2 | ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsn2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 4594 | . . . . 5 ⊢ 𝐴 ∈ {𝐴} |
3 | ffvelrn 6941 | . . . . 5 ⊢ ((𝐹:{𝐴}⟶𝐵 ∧ 𝐴 ∈ {𝐴}) → (𝐹‘𝐴) ∈ 𝐵) | |
4 | 2, 3 | mpan2 687 | . . . 4 ⊢ (𝐹:{𝐴}⟶𝐵 → (𝐹‘𝐴) ∈ 𝐵) |
5 | ffn 6584 | . . . . 5 ⊢ (𝐹:{𝐴}⟶𝐵 → 𝐹 Fn {𝐴}) | |
6 | dffn3 6597 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹) | |
7 | 6 | biimpi 215 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹) |
8 | imadmrn 5968 | . . . . . . . . 9 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
9 | fndm 6520 | . . . . . . . . . 10 ⊢ (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴}) | |
10 | 9 | imaeq2d 5958 | . . . . . . . . 9 ⊢ (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴})) |
11 | 8, 10 | eqtr3id 2793 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴})) |
12 | fnsnfv 6829 | . . . . . . . . 9 ⊢ ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
13 | 2, 12 | mpan2 687 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
14 | 11, 13 | eqtr4d 2781 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹‘𝐴)}) |
15 | 14 | feq3d 6571 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹 ↔ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
16 | 7, 15 | mpbid 231 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) |
17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝐹:{𝐴}⟶𝐵 → 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) |
18 | 4, 17 | jca 511 | . . 3 ⊢ (𝐹:{𝐴}⟶𝐵 → ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
19 | snssi 4738 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → {(𝐹‘𝐴)} ⊆ 𝐵) | |
20 | fss 6601 | . . . . 5 ⊢ ((𝐹:{𝐴}⟶{(𝐹‘𝐴)} ∧ {(𝐹‘𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵) | |
21 | 20 | ancoms 458 | . . . 4 ⊢ (({(𝐹‘𝐴)} ⊆ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) → 𝐹:{𝐴}⟶𝐵) |
22 | 19, 21 | sylan 579 | . . 3 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) → 𝐹:{𝐴}⟶𝐵) |
23 | 18, 22 | impbii 208 | . 2 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
24 | fvex 6769 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
25 | 1, 24 | fsn 6989 | . . 3 ⊢ (𝐹:{𝐴}⟶{(𝐹‘𝐴)} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
26 | 25 | anbi2i 622 | . 2 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
27 | 23, 26 | bitri 274 | 1 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 〈cop 4564 dom cdm 5580 ran crn 5581 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: fsn2g 6992 fnressn 7012 fressnfv 7014 mapsnconst 8638 elixpsn 8683 en1 8765 en1OLD 8766 mat1dimelbas 21528 0spth 28391 wlkl0 28632 ldepsnlinclem1 45734 ldepsnlinclem2 45735 0aryfvalel 45868 1arymaptf1 45876 |
Copyright terms: Public domain | W3C validator |