![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsn2 | Structured version Visualization version GIF version |
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
Ref | Expression |
---|---|
fsn2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fsn2 | ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsn2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 4684 | . . . . 5 ⊢ 𝐴 ∈ {𝐴} |
3 | ffvelcdm 7115 | . . . . 5 ⊢ ((𝐹:{𝐴}⟶𝐵 ∧ 𝐴 ∈ {𝐴}) → (𝐹‘𝐴) ∈ 𝐵) | |
4 | 2, 3 | mpan2 690 | . . . 4 ⊢ (𝐹:{𝐴}⟶𝐵 → (𝐹‘𝐴) ∈ 𝐵) |
5 | ffn 6747 | . . . . 5 ⊢ (𝐹:{𝐴}⟶𝐵 → 𝐹 Fn {𝐴}) | |
6 | dffn3 6759 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹) | |
7 | 6 | biimpi 216 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹) |
8 | imadmrn 6099 | . . . . . . . . 9 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
9 | fndm 6682 | . . . . . . . . . 10 ⊢ (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴}) | |
10 | 9 | imaeq2d 6089 | . . . . . . . . 9 ⊢ (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴})) |
11 | 8, 10 | eqtr3id 2794 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴})) |
12 | fnsnfv 7001 | . . . . . . . . 9 ⊢ ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
13 | 2, 12 | mpan2 690 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
14 | 11, 13 | eqtr4d 2783 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹‘𝐴)}) |
15 | 14 | feq3d 6734 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹 ↔ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
16 | 7, 15 | mpbid 232 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) |
17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝐹:{𝐴}⟶𝐵 → 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) |
18 | 4, 17 | jca 511 | . . 3 ⊢ (𝐹:{𝐴}⟶𝐵 → ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
19 | snssi 4833 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → {(𝐹‘𝐴)} ⊆ 𝐵) | |
20 | fss 6763 | . . . . 5 ⊢ ((𝐹:{𝐴}⟶{(𝐹‘𝐴)} ∧ {(𝐹‘𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵) | |
21 | 20 | ancoms 458 | . . . 4 ⊢ (({(𝐹‘𝐴)} ⊆ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) → 𝐹:{𝐴}⟶𝐵) |
22 | 19, 21 | sylan 579 | . . 3 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) → 𝐹:{𝐴}⟶𝐵) |
23 | 18, 22 | impbii 209 | . 2 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
24 | fvex 6933 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
25 | 1, 24 | fsn 7169 | . . 3 ⊢ (𝐹:{𝐴}⟶{(𝐹‘𝐴)} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
26 | 25 | anbi2i 622 | . 2 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
27 | 23, 26 | bitri 275 | 1 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {csn 4648 〈cop 4654 dom cdm 5700 ran crn 5701 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: fsn2g 7172 fnressn 7192 fressnfv 7194 mapsnconst 8950 elixpsn 8995 en1 9086 en1OLD 9087 mat1dimelbas 22498 0spth 30158 wlkl0 30399 ldepsnlinclem1 48234 ldepsnlinclem2 48235 0aryfvalel 48368 1arymaptf1 48376 |
Copyright terms: Public domain | W3C validator |