![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsn2 | Structured version Visualization version GIF version |
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
Ref | Expression |
---|---|
fsn2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fsn2 | ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsn2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 4669 | . . . . 5 ⊢ 𝐴 ∈ {𝐴} |
3 | ffvelcdm 7095 | . . . . 5 ⊢ ((𝐹:{𝐴}⟶𝐵 ∧ 𝐴 ∈ {𝐴}) → (𝐹‘𝐴) ∈ 𝐵) | |
4 | 2, 3 | mpan2 689 | . . . 4 ⊢ (𝐹:{𝐴}⟶𝐵 → (𝐹‘𝐴) ∈ 𝐵) |
5 | ffn 6728 | . . . . 5 ⊢ (𝐹:{𝐴}⟶𝐵 → 𝐹 Fn {𝐴}) | |
6 | dffn3 6740 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹) | |
7 | 6 | biimpi 215 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹) |
8 | imadmrn 6079 | . . . . . . . . 9 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
9 | fndm 6663 | . . . . . . . . . 10 ⊢ (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴}) | |
10 | 9 | imaeq2d 6069 | . . . . . . . . 9 ⊢ (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴})) |
11 | 8, 10 | eqtr3id 2780 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴})) |
12 | fnsnfv 6981 | . . . . . . . . 9 ⊢ ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
13 | 2, 12 | mpan2 689 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
14 | 11, 13 | eqtr4d 2769 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹‘𝐴)}) |
15 | 14 | feq3d 6715 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹 ↔ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
16 | 7, 15 | mpbid 231 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) |
17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝐹:{𝐴}⟶𝐵 → 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) |
18 | 4, 17 | jca 510 | . . 3 ⊢ (𝐹:{𝐴}⟶𝐵 → ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
19 | snssi 4817 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → {(𝐹‘𝐴)} ⊆ 𝐵) | |
20 | fss 6744 | . . . . 5 ⊢ ((𝐹:{𝐴}⟶{(𝐹‘𝐴)} ∧ {(𝐹‘𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵) | |
21 | 20 | ancoms 457 | . . . 4 ⊢ (({(𝐹‘𝐴)} ⊆ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) → 𝐹:{𝐴}⟶𝐵) |
22 | 19, 21 | sylan 578 | . . 3 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) → 𝐹:{𝐴}⟶𝐵) |
23 | 18, 22 | impbii 208 | . 2 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)})) |
24 | fvex 6914 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
25 | 1, 24 | fsn 7149 | . . 3 ⊢ (𝐹:{𝐴}⟶{(𝐹‘𝐴)} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
26 | 25 | anbi2i 621 | . 2 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹:{𝐴}⟶{(𝐹‘𝐴)}) ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
27 | 23, 26 | bitri 274 | 1 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 {csn 4633 〈cop 4639 dom cdm 5682 ran crn 5683 “ cima 5685 Fn wfn 6549 ⟶wf 6550 ‘cfv 6554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 |
This theorem is referenced by: fsn2g 7152 fnressn 7172 fressnfv 7174 mapsnconst 8921 elixpsn 8966 en1 9057 en1OLD 9058 mat1dimelbas 22464 0spth 30059 wlkl0 30300 ldepsnlinclem1 47888 ldepsnlinclem2 47889 0aryfvalel 48022 1arymaptf1 48030 |
Copyright terms: Public domain | W3C validator |