MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn2 Structured version   Visualization version   GIF version

Theorem fsn2 7070
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1 𝐴 ∈ V
Assertion
Ref Expression
fsn2 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fsn2
StepHypRef Expression
1 fsn2.1 . . . . . 6 𝐴 ∈ V
21snid 4614 . . . . 5 𝐴 ∈ {𝐴}
3 ffvelcdm 7015 . . . . 5 ((𝐹:{𝐴}⟶𝐵𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
42, 3mpan2 691 . . . 4 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ 𝐵)
5 ffn 6652 . . . . 5 (𝐹:{𝐴}⟶𝐵𝐹 Fn {𝐴})
6 dffn3 6664 . . . . . . 7 (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹)
76biimpi 216 . . . . . 6 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹)
8 imadmrn 6021 . . . . . . . . 9 (𝐹 “ dom 𝐹) = ran 𝐹
9 fndm 6585 . . . . . . . . . 10 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
109imaeq2d 6011 . . . . . . . . 9 (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴}))
118, 10eqtr3id 2778 . . . . . . . 8 (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴}))
12 fnsnfv 6902 . . . . . . . . 9 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
132, 12mpan2 691 . . . . . . . 8 (𝐹 Fn {𝐴} → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1411, 13eqtr4d 2767 . . . . . . 7 (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹𝐴)})
1514feq3d 6637 . . . . . 6 (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
167, 15mpbid 232 . . . . 5 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹𝐴)})
175, 16syl 17 . . . 4 (𝐹:{𝐴}⟶𝐵𝐹:{𝐴}⟶{(𝐹𝐴)})
184, 17jca 511 . . 3 (𝐹:{𝐴}⟶𝐵 → ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
19 snssi 4759 . . . 4 ((𝐹𝐴) ∈ 𝐵 → {(𝐹𝐴)} ⊆ 𝐵)
20 fss 6668 . . . . 5 ((𝐹:{𝐴}⟶{(𝐹𝐴)} ∧ {(𝐹𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵)
2120ancoms 458 . . . 4 (({(𝐹𝐴)} ⊆ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
2219, 21sylan 580 . . 3 (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
2318, 22impbii 209 . 2 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
24 fvex 6835 . . . 4 (𝐹𝐴) ∈ V
251, 24fsn 7069 . . 3 (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
2625anbi2i 623 . 2 (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
2723, 26bitri 275 1 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  {csn 4577  cop 4583  dom cdm 5619  ran crn 5620  cima 5622   Fn wfn 6477  wf 6478  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  fsn2g  7072  fnressn  7092  fressnfv  7094  mapsnconst  8819  elixpsn  8864  en1  8949  mat1dimelbas  22356  0spth  30070  wlkl0  30311  ldepsnlinclem1  48490  ldepsnlinclem2  48491  0aryfvalel  48619  1arymaptf1  48627  termcfuncval  49517
  Copyright terms: Public domain W3C validator