MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsn2 Structured version   Visualization version   GIF version

Theorem fsn2 7008
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1 𝐴 ∈ V
Assertion
Ref Expression
fsn2 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fsn2
StepHypRef Expression
1 fsn2.1 . . . . . 6 𝐴 ∈ V
21snid 4597 . . . . 5 𝐴 ∈ {𝐴}
3 ffvelrn 6959 . . . . 5 ((𝐹:{𝐴}⟶𝐵𝐴 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
42, 3mpan2 688 . . . 4 (𝐹:{𝐴}⟶𝐵 → (𝐹𝐴) ∈ 𝐵)
5 ffn 6600 . . . . 5 (𝐹:{𝐴}⟶𝐵𝐹 Fn {𝐴})
6 dffn3 6613 . . . . . . 7 (𝐹 Fn {𝐴} ↔ 𝐹:{𝐴}⟶ran 𝐹)
76biimpi 215 . . . . . 6 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶ran 𝐹)
8 imadmrn 5979 . . . . . . . . 9 (𝐹 “ dom 𝐹) = ran 𝐹
9 fndm 6536 . . . . . . . . . 10 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
109imaeq2d 5969 . . . . . . . . 9 (𝐹 Fn {𝐴} → (𝐹 “ dom 𝐹) = (𝐹 “ {𝐴}))
118, 10eqtr3id 2792 . . . . . . . 8 (𝐹 Fn {𝐴} → ran 𝐹 = (𝐹 “ {𝐴}))
12 fnsnfv 6847 . . . . . . . . 9 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
132, 12mpan2 688 . . . . . . . 8 (𝐹 Fn {𝐴} → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1411, 13eqtr4d 2781 . . . . . . 7 (𝐹 Fn {𝐴} → ran 𝐹 = {(𝐹𝐴)})
1514feq3d 6587 . . . . . 6 (𝐹 Fn {𝐴} → (𝐹:{𝐴}⟶ran 𝐹𝐹:{𝐴}⟶{(𝐹𝐴)}))
167, 15mpbid 231 . . . . 5 (𝐹 Fn {𝐴} → 𝐹:{𝐴}⟶{(𝐹𝐴)})
175, 16syl 17 . . . 4 (𝐹:{𝐴}⟶𝐵𝐹:{𝐴}⟶{(𝐹𝐴)})
184, 17jca 512 . . 3 (𝐹:{𝐴}⟶𝐵 → ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
19 snssi 4741 . . . 4 ((𝐹𝐴) ∈ 𝐵 → {(𝐹𝐴)} ⊆ 𝐵)
20 fss 6617 . . . . 5 ((𝐹:{𝐴}⟶{(𝐹𝐴)} ∧ {(𝐹𝐴)} ⊆ 𝐵) → 𝐹:{𝐴}⟶𝐵)
2120ancoms 459 . . . 4 (({(𝐹𝐴)} ⊆ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
2219, 21sylan 580 . . 3 (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) → 𝐹:{𝐴}⟶𝐵)
2318, 22impbii 208 . 2 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}))
24 fvex 6787 . . . 4 (𝐹𝐴) ∈ V
251, 24fsn 7007 . . 3 (𝐹:{𝐴}⟶{(𝐹𝐴)} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
2625anbi2i 623 . 2 (((𝐹𝐴) ∈ 𝐵𝐹:{𝐴}⟶{(𝐹𝐴)}) ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
2723, 26bitri 274 1 (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  {csn 4561  cop 4567  dom cdm 5589  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  fsn2g  7010  fnressn  7030  fressnfv  7032  mapsnconst  8680  elixpsn  8725  en1  8811  en1OLD  8812  mat1dimelbas  21620  0spth  28490  wlkl0  28731  ldepsnlinclem1  45846  ldepsnlinclem2  45847  0aryfvalel  45980  1arymaptf1  45988
  Copyright terms: Public domain W3C validator