MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulc Structured version   Visualization version   GIF version

Theorem i1fmulc 24469
Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulc (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)

Proof of Theorem i1fmulc
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10719 . . . . 5 ℝ ∈ V
21a1i 11 . . . 4 ((𝜑𝐴 = 0) → ℝ ∈ V)
3 i1fmulc.2 . . . . . 6 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 24441 . . . . . 6 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . . . 5 (𝜑𝐹:ℝ⟶ℝ)
65adantr 484 . . . 4 ((𝜑𝐴 = 0) → 𝐹:ℝ⟶ℝ)
7 i1fmulc.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 484 . . . 4 ((𝜑𝐴 = 0) → 𝐴 ∈ ℝ)
9 0red 10735 . . . 4 ((𝜑𝐴 = 0) → 0 ∈ ℝ)
10 simplr 769 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → 𝐴 = 0)
1110oveq1d 7198 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = (0 · 𝑥))
12 mul02lem2 10908 . . . . . 6 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
1312adantl 485 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
1411, 13eqtrd 2774 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = 0)
152, 6, 8, 9, 14caofid2 7471 . . 3 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘f · 𝐹) = (ℝ × {0}))
16 i1f0 24452 . . 3 (ℝ × {0}) ∈ dom ∫1
1715, 16eqeltrdi 2842 . 2 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
18 remulcl 10713 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1918adantl 485 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
20 fconst6g 6578 . . . . . 6 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶ℝ)
217, 20syl 17 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
221a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
23 inidm 4119 . . . . 5 (ℝ ∩ ℝ) = ℝ
2419, 21, 5, 22, 22, 23off 7455 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
2524adantr 484 . . 3 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
26 i1frn 24442 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
273, 26syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
28 ovex 7216 . . . . . . . 8 (𝐴 · 𝑦) ∈ V
29 eqid 2739 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
3028, 29fnmpti 6491 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹
31 dffn4 6609 . . . . . . 7 ((𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹 ↔ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
3230, 31mpbi 233 . . . . . 6 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
33 fofi 8896 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
3427, 32, 33sylancl 589 . . . . 5 (𝜑 → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
35 id 22 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹𝑤 ∈ ran 𝐹)
36 elsni 4543 . . . . . . . . . . . 12 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3736oveq1d 7198 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → (𝑥 · 𝑤) = (𝐴 · 𝑤))
38 oveq2 7191 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
3938rspceeqv 3544 . . . . . . . . . . 11 ((𝑤 ∈ ran 𝐹 ∧ (𝑥 · 𝑤) = (𝐴 · 𝑤)) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4035, 37, 39syl2anr 600 . . . . . . . . . 10 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
41 ovex 7216 . . . . . . . . . . 11 (𝑥 · 𝑤) ∈ V
42 eqeq1 2743 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑤) → (𝑧 = (𝐴 · 𝑦) ↔ (𝑥 · 𝑤) = (𝐴 · 𝑦)))
4342rexbidv 3208 . . . . . . . . . . 11 (𝑧 = (𝑥 · 𝑤) → (∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦) ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦)))
4441, 43elab 3578 . . . . . . . . . 10 ((𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4540, 44sylibr 237 . . . . . . . . 9 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
4645adantl 485 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹)) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
47 fconstg 6576 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
487, 47syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
495ffnd 6516 . . . . . . . . 9 (𝜑𝐹 Fn ℝ)
50 dffn3 6528 . . . . . . . . 9 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
5149, 50sylib 221 . . . . . . . 8 (𝜑𝐹:ℝ⟶ran 𝐹)
5246, 48, 51, 22, 22, 23off 7455 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶{𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5352frnd 6523 . . . . . 6 (𝜑 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ⊆ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5429rnmpt 5808 . . . . . 6 ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}
5553, 54sseqtrrdi 3938 . . . . 5 (𝜑 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
5634, 55ssfid 8832 . . . 4 (𝜑 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin)
5756adantr 484 . . 3 ((𝜑𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin)
5824frnd 6523 . . . . . . . 8 (𝜑 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ⊆ ℝ)
5958ssdifssd 4043 . . . . . . 7 (𝜑 → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ℝ)
6059adantr 484 . . . . . 6 ((𝜑𝐴 ≠ 0) → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ℝ)
6160sselda 3887 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑦 ∈ ℝ)
623, 7i1fmulclem 24468 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
6361, 62syldan 594 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
64 i1fima 24443 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
653, 64syl 17 . . . . 5 (𝜑 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
6665ad2antrr 726 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
6763, 66eqeltrd 2834 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦}) ∈ dom vol)
6863fveq2d 6691 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦})) = (vol‘(𝐹 “ {(𝑦 / 𝐴)})))
693ad2antrr 726 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐹 ∈ dom ∫1)
707ad2antrr 726 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℝ)
71 simplr 769 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ≠ 0)
7261, 70, 71redivcld 11559 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ ℝ)
7361recnd 10760 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑦 ∈ ℂ)
7470recnd 10760 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
75 eldifsni 4688 . . . . . . . 8 (𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → 𝑦 ≠ 0)
7675adantl 485 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑦 ≠ 0)
7773, 74, 76, 71divne0d 11523 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ≠ 0)
78 eldifsn 4685 . . . . . 6 ((𝑦 / 𝐴) ∈ (ℝ ∖ {0}) ↔ ((𝑦 / 𝐴) ∈ ℝ ∧ (𝑦 / 𝐴) ≠ 0))
7972, 77, 78sylanbrc 586 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ (ℝ ∖ {0}))
80 i1fima2sn 24445 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ (𝑦 / 𝐴) ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8169, 79, 80syl2anc 587 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8268, 81eqeltrd 2834 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦})) ∈ ℝ)
8325, 57, 67, 82i1fd 24446 . 2 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
8417, 83pm2.61dane 3022 1 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {cab 2717  wne 2935  wrex 3055  Vcvv 3400  cdif 3850  wss 3853  {csn 4526  cmpt 5120   × cxp 5533  ccnv 5534  dom cdm 5535  ran crn 5536  cima 5538   Fn wfn 6345  wf 6346  ontowfo 6348  cfv 6350  (class class class)co 7183  f cof 7436  Fincfn 8568  cr 10627  0cc0 10628   · cmul 10633   / cdiv 11388  volcvol 24228  1citg1 24380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-inf2 9190  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705  ax-pre-sup 10706
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-of 7438  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-2o 8145  df-er 8333  df-map 8452  df-pm 8453  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-sup 8992  df-inf 8993  df-oi 9060  df-dju 9416  df-card 9454  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-div 11389  df-nn 11730  df-2 11792  df-3 11793  df-n0 11990  df-z 12076  df-uz 12338  df-q 12444  df-rp 12486  df-xadd 12604  df-ioo 12838  df-ico 12840  df-icc 12841  df-fz 12995  df-fzo 13138  df-fl 13266  df-seq 13474  df-exp 13535  df-hash 13796  df-cj 14561  df-re 14562  df-im 14563  df-sqrt 14697  df-abs 14698  df-clim 14948  df-sum 15149  df-xmet 20223  df-met 20224  df-ovol 24229  df-vol 24230  df-mbf 24384  df-itg1 24385
This theorem is referenced by:  itg1mulc  24470  i1fsub  24474  itg1sub  24475  itg2const  24506  itg2mulclem  24512  itg2monolem1  24516  i1fibl  24573  itgitg1  24574  itg2addnclem  35484  ftc1anclem5  35510
  Copyright terms: Public domain W3C validator