MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulc Structured version   Visualization version   GIF version

Theorem i1fmulc 23810
Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulc (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)

Proof of Theorem i1fmulc
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10316 . . . . 5 ℝ ∈ V
21a1i 11 . . . 4 ((𝜑𝐴 = 0) → ℝ ∈ V)
3 i1fmulc.2 . . . . . 6 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 23783 . . . . . 6 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . . . 5 (𝜑𝐹:ℝ⟶ℝ)
65adantr 473 . . . 4 ((𝜑𝐴 = 0) → 𝐹:ℝ⟶ℝ)
7 i1fmulc.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 473 . . . 4 ((𝜑𝐴 = 0) → 𝐴 ∈ ℝ)
9 0red 10333 . . . 4 ((𝜑𝐴 = 0) → 0 ∈ ℝ)
10 simplr 786 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → 𝐴 = 0)
1110oveq1d 6894 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = (0 · 𝑥))
12 mul02lem2 10504 . . . . . 6 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
1312adantl 474 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
1411, 13eqtrd 2834 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = 0)
152, 6, 8, 9, 14caofid2 7163 . . 3 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) = (ℝ × {0}))
16 i1f0 23794 . . 3 (ℝ × {0}) ∈ dom ∫1
1715, 16syl6eqel 2887 . 2 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)
18 remulcl 10310 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1918adantl 474 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
20 fconst6g 6310 . . . . . 6 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶ℝ)
217, 20syl 17 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
221a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
23 inidm 4019 . . . . 5 (ℝ ∩ ℝ) = ℝ
2419, 21, 5, 22, 22, 23off 7147 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
2524adantr 473 . . 3 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
26 i1frn 23784 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
273, 26syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
28 ovex 6911 . . . . . . . 8 (𝐴 · 𝑦) ∈ V
29 eqid 2800 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
3028, 29fnmpti 6234 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹
31 dffn4 6338 . . . . . . 7 ((𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹 ↔ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
3230, 31mpbi 222 . . . . . 6 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
33 fofi 8495 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
3427, 32, 33sylancl 581 . . . . 5 (𝜑 → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
35 id 22 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹𝑤 ∈ ran 𝐹)
36 elsni 4386 . . . . . . . . . . . 12 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3736oveq1d 6894 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → (𝑥 · 𝑤) = (𝐴 · 𝑤))
38 oveq2 6887 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
3938rspceeqv 3516 . . . . . . . . . . 11 ((𝑤 ∈ ran 𝐹 ∧ (𝑥 · 𝑤) = (𝐴 · 𝑤)) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4035, 37, 39syl2anr 591 . . . . . . . . . 10 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
41 ovex 6911 . . . . . . . . . . 11 (𝑥 · 𝑤) ∈ V
42 eqeq1 2804 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑤) → (𝑧 = (𝐴 · 𝑦) ↔ (𝑥 · 𝑤) = (𝐴 · 𝑦)))
4342rexbidv 3234 . . . . . . . . . . 11 (𝑧 = (𝑥 · 𝑤) → (∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦) ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦)))
4441, 43elab 3543 . . . . . . . . . 10 ((𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4540, 44sylibr 226 . . . . . . . . 9 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
4645adantl 474 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹)) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
47 fconstg 6308 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
487, 47syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
495ffnd 6258 . . . . . . . . 9 (𝜑𝐹 Fn ℝ)
50 dffn3 6268 . . . . . . . . 9 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
5149, 50sylib 210 . . . . . . . 8 (𝜑𝐹:ℝ⟶ran 𝐹)
5246, 48, 51, 22, 22, 23off 7147 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶{𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5352frnd 6264 . . . . . 6 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5429rnmpt 5576 . . . . . 6 ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}
5553, 54syl6sseqr 3849 . . . . 5 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
56 ssfi 8423 . . . . 5 ((ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin ∧ ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ Fin)
5734, 55, 56syl2anc 580 . . . 4 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ Fin)
5857adantr 473 . . 3 ((𝜑𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ Fin)
5924frnd 6264 . . . . . . . 8 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ℝ)
6059ssdifssd 3947 . . . . . . 7 (𝜑 → (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0}) ⊆ ℝ)
6160adantr 473 . . . . . 6 ((𝜑𝐴 ≠ 0) → (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0}) ⊆ ℝ)
6261sselda 3799 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝑦 ∈ ℝ)
633, 7i1fmulclem 23809 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
6462, 63syldan 586 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
65 i1fima 23785 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
663, 65syl 17 . . . . 5 (𝜑 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
6766ad2antrr 718 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
6864, 67eqeltrd 2879 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦}) ∈ dom vol)
6964fveq2d 6416 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦})) = (vol‘(𝐹 “ {(𝑦 / 𝐴)})))
703ad2antrr 718 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐹 ∈ dom ∫1)
717ad2antrr 718 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐴 ∈ ℝ)
72 simplr 786 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐴 ≠ 0)
7362, 71, 72redivcld 11146 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ ℝ)
7462recnd 10358 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝑦 ∈ ℂ)
7571recnd 10358 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
76 eldifsni 4511 . . . . . . . 8 (𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0}) → 𝑦 ≠ 0)
7776adantl 474 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝑦 ≠ 0)
7874, 75, 77, 72divne0d 11110 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ≠ 0)
79 eldifsn 4507 . . . . . 6 ((𝑦 / 𝐴) ∈ (ℝ ∖ {0}) ↔ ((𝑦 / 𝐴) ∈ ℝ ∧ (𝑦 / 𝐴) ≠ 0))
8073, 78, 79sylanbrc 579 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ (ℝ ∖ {0}))
81 i1fima2sn 23787 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ (𝑦 / 𝐴) ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8270, 80, 81syl2anc 580 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8369, 82eqeltrd 2879 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦})) ∈ ℝ)
8425, 58, 68, 83i1fd 23788 . 2 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)
8517, 84pm2.61dane 3059 1 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  {cab 2786  wne 2972  wrex 3091  Vcvv 3386  cdif 3767  wss 3770  {csn 4369  cmpt 4923   × cxp 5311  ccnv 5312  dom cdm 5313  ran crn 5314  cima 5316   Fn wfn 6097  wf 6098  ontowfo 6100  cfv 6102  (class class class)co 6879  𝑓 cof 7130  Fincfn 8196  cr 10224  0cc0 10225   · cmul 10230   / cdiv 10977  volcvol 23570  1citg1 23722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-map 8098  df-pm 8099  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-cda 9279  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-n0 11580  df-z 11666  df-uz 11930  df-q 12033  df-rp 12074  df-xadd 12193  df-ioo 12427  df-ico 12429  df-icc 12430  df-fz 12580  df-fzo 12720  df-fl 12847  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-clim 14559  df-sum 14757  df-xmet 20060  df-met 20061  df-ovol 23571  df-vol 23572  df-mbf 23726  df-itg1 23727
This theorem is referenced by:  itg1mulc  23811  i1fsub  23815  itg1sub  23816  itg2const  23847  itg2mulclem  23853  itg2monolem1  23857  i1fibl  23914  itgitg1  23915  itg2addnclem  33948  ftc1anclem5  33976
  Copyright terms: Public domain W3C validator