Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulc Structured version   Visualization version   GIF version

Theorem i1fmulc 24238
 Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulc (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)

Proof of Theorem i1fmulc
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10622 . . . . 5 ℝ ∈ V
21a1i 11 . . . 4 ((𝜑𝐴 = 0) → ℝ ∈ V)
3 i1fmulc.2 . . . . . 6 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 24211 . . . . . 6 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . . . 5 (𝜑𝐹:ℝ⟶ℝ)
65adantr 481 . . . 4 ((𝜑𝐴 = 0) → 𝐹:ℝ⟶ℝ)
7 i1fmulc.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 481 . . . 4 ((𝜑𝐴 = 0) → 𝐴 ∈ ℝ)
9 0red 10638 . . . 4 ((𝜑𝐴 = 0) → 0 ∈ ℝ)
10 simplr 765 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → 𝐴 = 0)
1110oveq1d 7165 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = (0 · 𝑥))
12 mul02lem2 10811 . . . . . 6 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
1312adantl 482 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
1411, 13eqtrd 2861 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = 0)
152, 6, 8, 9, 14caofid2 7434 . . 3 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘f · 𝐹) = (ℝ × {0}))
16 i1f0 24222 . . 3 (ℝ × {0}) ∈ dom ∫1
1715, 16syl6eqel 2926 . 2 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
18 remulcl 10616 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1918adantl 482 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
20 fconst6g 6567 . . . . . 6 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶ℝ)
217, 20syl 17 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
221a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
23 inidm 4199 . . . . 5 (ℝ ∩ ℝ) = ℝ
2419, 21, 5, 22, 22, 23off 7418 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
2524adantr 481 . . 3 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
26 i1frn 24212 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
273, 26syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
28 ovex 7183 . . . . . . . 8 (𝐴 · 𝑦) ∈ V
29 eqid 2826 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
3028, 29fnmpti 6490 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹
31 dffn4 6595 . . . . . . 7 ((𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹 ↔ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
3230, 31mpbi 231 . . . . . 6 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
33 fofi 8804 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
3427, 32, 33sylancl 586 . . . . 5 (𝜑 → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
35 id 22 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹𝑤 ∈ ran 𝐹)
36 elsni 4581 . . . . . . . . . . . 12 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3736oveq1d 7165 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → (𝑥 · 𝑤) = (𝐴 · 𝑤))
38 oveq2 7158 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
3938rspceeqv 3642 . . . . . . . . . . 11 ((𝑤 ∈ ran 𝐹 ∧ (𝑥 · 𝑤) = (𝐴 · 𝑤)) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4035, 37, 39syl2anr 596 . . . . . . . . . 10 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
41 ovex 7183 . . . . . . . . . . 11 (𝑥 · 𝑤) ∈ V
42 eqeq1 2830 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑤) → (𝑧 = (𝐴 · 𝑦) ↔ (𝑥 · 𝑤) = (𝐴 · 𝑦)))
4342rexbidv 3302 . . . . . . . . . . 11 (𝑧 = (𝑥 · 𝑤) → (∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦) ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦)))
4441, 43elab 3671 . . . . . . . . . 10 ((𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4540, 44sylibr 235 . . . . . . . . 9 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
4645adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹)) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
47 fconstg 6565 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
487, 47syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
495ffnd 6514 . . . . . . . . 9 (𝜑𝐹 Fn ℝ)
50 dffn3 6524 . . . . . . . . 9 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
5149, 50sylib 219 . . . . . . . 8 (𝜑𝐹:ℝ⟶ran 𝐹)
5246, 48, 51, 22, 22, 23off 7418 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶{𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5352frnd 6520 . . . . . 6 (𝜑 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ⊆ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5429rnmpt 5826 . . . . . 6 ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}
5553, 54sseqtrrdi 4022 . . . . 5 (𝜑 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
5634, 55ssfid 8735 . . . 4 (𝜑 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin)
5756adantr 481 . . 3 ((𝜑𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin)
5824frnd 6520 . . . . . . . 8 (𝜑 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ⊆ ℝ)
5958ssdifssd 4123 . . . . . . 7 (𝜑 → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ℝ)
6059adantr 481 . . . . . 6 ((𝜑𝐴 ≠ 0) → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ℝ)
6160sselda 3971 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑦 ∈ ℝ)
623, 7i1fmulclem 24237 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
6361, 62syldan 591 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
64 i1fima 24213 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
653, 64syl 17 . . . . 5 (𝜑 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
6665ad2antrr 722 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
6763, 66eqeltrd 2918 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦}) ∈ dom vol)
6863fveq2d 6673 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦})) = (vol‘(𝐹 “ {(𝑦 / 𝐴)})))
693ad2antrr 722 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐹 ∈ dom ∫1)
707ad2antrr 722 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℝ)
71 simplr 765 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ≠ 0)
7261, 70, 71redivcld 11462 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ ℝ)
7361recnd 10663 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑦 ∈ ℂ)
7470recnd 10663 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
75 eldifsni 4721 . . . . . . . 8 (𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → 𝑦 ≠ 0)
7675adantl 482 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑦 ≠ 0)
7773, 74, 76, 71divne0d 11426 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ≠ 0)
78 eldifsn 4718 . . . . . 6 ((𝑦 / 𝐴) ∈ (ℝ ∖ {0}) ↔ ((𝑦 / 𝐴) ∈ ℝ ∧ (𝑦 / 𝐴) ≠ 0))
7972, 77, 78sylanbrc 583 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ (ℝ ∖ {0}))
80 i1fima2sn 24215 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ (𝑦 / 𝐴) ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8169, 79, 80syl2anc 584 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8268, 81eqeltrd 2918 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑦})) ∈ ℝ)
8325, 57, 67, 82i1fd 24216 . 2 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
8417, 83pm2.61dane 3109 1 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107  {cab 2804   ≠ wne 3021  ∃wrex 3144  Vcvv 3500   ∖ cdif 3937   ⊆ wss 3940  {csn 4564   ↦ cmpt 5143   × cxp 5552  ◡ccnv 5553  dom cdm 5554  ran crn 5555   “ cima 5557   Fn wfn 6349  ⟶wf 6350  –onto→wfo 6352  ‘cfv 6354  (class class class)co 7150   ∘f cof 7401  Fincfn 8503  ℝcr 10530  0cc0 10531   · cmul 10536   / cdiv 11291  volcvol 23998  ∫1citg1 24150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-xadd 12503  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-xmet 20473  df-met 20474  df-ovol 23999  df-vol 24000  df-mbf 24154  df-itg1 24155 This theorem is referenced by:  itg1mulc  24239  i1fsub  24243  itg1sub  24244  itg2const  24275  itg2mulclem  24281  itg2monolem1  24285  i1fibl  24342  itgitg1  24343  itg2addnclem  34829  ftc1anclem5  34857
 Copyright terms: Public domain W3C validator