| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foelcdmi | Structured version Visualization version GIF version | ||
| Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| foelcdmi | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | forn 6778 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 2 | 1 | eleq2d 2815 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ ran 𝐹 ↔ 𝑌 ∈ 𝐵)) |
| 3 | fofn 6777 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 4 | fvelrnb 6924 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) |
| 6 | 2, 5 | bitr3d 281 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌)) |
| 7 | 6 | biimpa 476 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ran crn 5642 Fn wfn 6509 –onto→wfo 6512 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 |
| This theorem is referenced by: mhmid 19002 mhmmnd 19003 ghmgrp 19005 symgmov2 19325 ghmcmn 19768 imasabl 19813 mndlactfo 32975 mndractfo 32977 founiiun 45180 founiiun0 45191 sge0f1o 46387 isomenndlem 46535 ovnsubaddlem1 46575 f1oresf1o2 47296 grimuhgr 47891 grimcnv 47892 |
| Copyright terms: Public domain | W3C validator |