MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foelcdmi Structured version   Visualization version   GIF version

Theorem foelcdmi 6925
Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.)
Assertion
Ref Expression
foelcdmi ((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑌

Proof of Theorem foelcdmi
StepHypRef Expression
1 forn 6778 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
21eleq2d 2815 . . 3 (𝐹:𝐴onto𝐵 → (𝑌 ∈ ran 𝐹𝑌𝐵))
3 fofn 6777 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
4 fvelrnb 6924 . . . 4 (𝐹 Fn 𝐴 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
53, 4syl 17 . . 3 (𝐹:𝐴onto𝐵 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
62, 5bitr3d 281 . 2 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
76biimpa 476 1 ((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  ran crn 5642   Fn wfn 6509  ontowfo 6512  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522
This theorem is referenced by:  mhmid  19002  mhmmnd  19003  ghmgrp  19005  symgmov2  19325  ghmcmn  19768  imasabl  19813  mndlactfo  32975  mndractfo  32977  founiiun  45180  founiiun0  45191  sge0f1o  46387  isomenndlem  46535  ovnsubaddlem1  46575  f1oresf1o2  47296  grimuhgr  47891  grimcnv  47892
  Copyright terms: Public domain W3C validator