MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foelcdmi Structured version   Visualization version   GIF version

Theorem foelcdmi 6888
Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.)
Assertion
Ref Expression
foelcdmi ((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑌

Proof of Theorem foelcdmi
StepHypRef Expression
1 forn 6743 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
21eleq2d 2814 . . 3 (𝐹:𝐴onto𝐵 → (𝑌 ∈ ran 𝐹𝑌𝐵))
3 fofn 6742 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
4 fvelrnb 6887 . . . 4 (𝐹 Fn 𝐴 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
53, 4syl 17 . . 3 (𝐹:𝐴onto𝐵 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
62, 5bitr3d 281 . 2 (𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑌))
76biimpa 476 1 ((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  ran crn 5624   Fn wfn 6481  ontowfo 6484  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494
This theorem is referenced by:  mhmid  18960  mhmmnd  18961  ghmgrp  18963  symgmov2  19285  ghmcmn  19728  imasabl  19773  mndlactfo  32994  mndractfo  32996  founiiun  45160  founiiun0  45171  sge0f1o  46367  isomenndlem  46515  ovnsubaddlem1  46555  f1oresf1o2  47279  grimuhgr  47875  grimcnv  47876
  Copyright terms: Public domain W3C validator