Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diadm Structured version   Visualization version   GIF version

Theorem diadm 39894
Description: Domain of the partial isomorphism A. (Contributed by NM, 3-Dec-2013.)
Hypotheses
Ref Expression
diafn.b 𝐡 = (Baseβ€˜πΎ)
diafn.l ≀ = (leβ€˜πΎ)
diafn.h 𝐻 = (LHypβ€˜πΎ)
diafn.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
diadm ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
Distinct variable groups:   π‘₯, ≀   π‘₯,𝐡   π‘₯,𝐾   π‘₯,π‘Š
Allowed substitution hints:   𝐻(π‘₯)   𝐼(π‘₯)   𝑉(π‘₯)

Proof of Theorem diadm
StepHypRef Expression
1 diafn.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 diafn.l . . 3 ≀ = (leβ€˜πΎ)
3 diafn.h . . 3 𝐻 = (LHypβ€˜πΎ)
4 diafn.i . . 3 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4diafn 39893 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
65fndmd 6651 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   class class class wbr 5147  dom cdm 5675  β€˜cfv 6540  Basecbs 17140  lecple 17200  LHypclh 38843  DIsoAcdia 39887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-disoa 39888
This theorem is referenced by:  diaeldm  39895  diaglbN  39914  diaintclN  39917  dibfnN  40015  dibglbN  40025
  Copyright terms: Public domain W3C validator