Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diafn Structured version   Visualization version   GIF version

Theorem diafn 41023
Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
diafn.b 𝐵 = (Base‘𝐾)
diafn.l = (le‘𝐾)
diafn.h 𝐻 = (LHyp‘𝐾)
diafn.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diafn ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑥𝐵𝑥 𝑊})
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝐾   𝑥,𝑊
Allowed substitution hints:   𝐻(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem diafn
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6873 . . . 4 ((LTrn‘𝐾)‘𝑊) ∈ V
21rabex 5296 . . 3 {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦} ∈ V
3 eqid 2730 . . 3 (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦}) = (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦})
42, 3fnmpti 6663 . 2 (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦}) Fn {𝑥𝐵𝑥 𝑊}
5 diafn.b . . . 4 𝐵 = (Base‘𝐾)
6 diafn.l . . . 4 = (le‘𝐾)
7 diafn.h . . . 4 𝐻 = (LHyp‘𝐾)
8 eqid 2730 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
9 eqid 2730 . . . 4 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
10 diafn.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
115, 6, 7, 8, 9, 10diafval 41020 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦}))
1211fneq1d 6613 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼 Fn {𝑥𝐵𝑥 𝑊} ↔ (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦}) Fn {𝑥𝐵𝑥 𝑊}))
134, 12mpbiri 258 1 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑥𝐵𝑥 𝑊})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408   class class class wbr 5109  cmpt 5190   Fn wfn 6508  cfv 6513  Basecbs 17185  lecple 17233  LHypclh 39973  LTrncltrn 40090  trLctrl 40147  DIsoAcdia 41017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-disoa 41018
This theorem is referenced by:  diadm  41024  diaelrnN  41034  diaf11N  41038
  Copyright terms: Public domain W3C validator