Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diafn | Structured version Visualization version GIF version |
Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.) |
Ref | Expression |
---|---|
diafn.b | ⊢ 𝐵 = (Base‘𝐾) |
diafn.l | ⊢ ≤ = (le‘𝐾) |
diafn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diafn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diafn | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
2 | 1 | rabex 5251 | . . 3 ⊢ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦} ∈ V |
3 | eqid 2738 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) = (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) | |
4 | 2, 3 | fnmpti 6560 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} |
5 | diafn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | diafn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
7 | diafn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | eqid 2738 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
9 | eqid 2738 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
10 | diafn.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
11 | 5, 6, 7, 8, 9, 10 | diafval 38972 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦})) |
12 | 11 | fneq1d 6510 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↔ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
13 | 4, 12 | mpbiri 257 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ↦ cmpt 5153 Fn wfn 6413 ‘cfv 6418 Basecbs 16840 lecple 16895 LHypclh 37925 LTrncltrn 38042 trLctrl 38099 DIsoAcdia 38969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-disoa 38970 |
This theorem is referenced by: diadm 38976 diaelrnN 38986 diaf11N 38990 |
Copyright terms: Public domain | W3C validator |