Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diafn Structured version   Visualization version   GIF version

Theorem diafn 39900
Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
diafn.b 𝐡 = (Baseβ€˜πΎ)
diafn.l ≀ = (leβ€˜πΎ)
diafn.h 𝐻 = (LHypβ€˜πΎ)
diafn.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
diafn ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
Distinct variable groups:   π‘₯, ≀   π‘₯,𝐡   π‘₯,𝐾   π‘₯,π‘Š
Allowed substitution hints:   𝐻(π‘₯)   𝐼(π‘₯)   𝑉(π‘₯)

Proof of Theorem diafn
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . . 4 ((LTrnβ€˜πΎ)β€˜π‘Š) ∈ V
21rabex 5332 . . 3 {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“) ≀ 𝑦} ∈ V
3 eqid 2732 . . 3 (𝑦 ∈ {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“) ≀ 𝑦}) = (𝑦 ∈ {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“) ≀ 𝑦})
42, 3fnmpti 6693 . 2 (𝑦 ∈ {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“) ≀ 𝑦}) Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š}
5 diafn.b . . . 4 𝐡 = (Baseβ€˜πΎ)
6 diafn.l . . . 4 ≀ = (leβ€˜πΎ)
7 diafn.h . . . 4 𝐻 = (LHypβ€˜πΎ)
8 eqid 2732 . . . 4 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
9 eqid 2732 . . . 4 ((trLβ€˜πΎ)β€˜π‘Š) = ((trLβ€˜πΎ)β€˜π‘Š)
10 diafn.i . . . 4 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
115, 6, 7, 8, 9, 10diafval 39897 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (𝑦 ∈ {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“) ≀ 𝑦}))
1211fneq1d 6642 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝐼 Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š} ↔ (𝑦 ∈ {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š} ↦ {𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“) ≀ 𝑦}) Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š}))
134, 12mpbiri 257 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   class class class wbr 5148   ↦ cmpt 5231   Fn wfn 6538  β€˜cfv 6543  Basecbs 17143  lecple 17203  LHypclh 38850  LTrncltrn 38967  trLctrl 39024  DIsoAcdia 39894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-disoa 39895
This theorem is referenced by:  diadm  39901  diaelrnN  39911  diaf11N  39915
  Copyright terms: Public domain W3C validator