| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diafn | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.) |
| Ref | Expression |
|---|---|
| diafn.b | ⊢ 𝐵 = (Base‘𝐾) |
| diafn.l | ⊢ ≤ = (le‘𝐾) |
| diafn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| diafn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| diafn | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6873 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
| 2 | 1 | rabex 5296 | . . 3 ⊢ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦} ∈ V |
| 3 | eqid 2730 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) = (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) | |
| 4 | 2, 3 | fnmpti 6663 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} |
| 5 | diafn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | diafn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 7 | diafn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | eqid 2730 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 9 | eqid 2730 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 10 | diafn.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 11 | 5, 6, 7, 8, 9, 10 | diafval 41020 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦})) |
| 12 | 11 | fneq1d 6613 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↔ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
| 13 | 4, 12 | mpbiri 258 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 class class class wbr 5109 ↦ cmpt 5190 Fn wfn 6508 ‘cfv 6513 Basecbs 17185 lecple 17233 LHypclh 39973 LTrncltrn 40090 trLctrl 40147 DIsoAcdia 41017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-disoa 41018 |
| This theorem is referenced by: diadm 41024 diaelrnN 41034 diaf11N 41038 |
| Copyright terms: Public domain | W3C validator |