![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diafn | Structured version Visualization version GIF version |
Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.) |
Ref | Expression |
---|---|
diafn.b | ⊢ 𝐵 = (Base‘𝐾) |
diafn.l | ⊢ ≤ = (le‘𝐾) |
diafn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diafn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diafn | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6927 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
2 | 1 | rabex 5348 | . . 3 ⊢ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦} ∈ V |
3 | eqid 2737 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) = (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) | |
4 | 2, 3 | fnmpti 6719 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} |
5 | diafn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | diafn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
7 | diafn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | eqid 2737 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
9 | eqid 2737 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
10 | diafn.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
11 | 5, 6, 7, 8, 9, 10 | diafval 41028 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦})) |
12 | 11 | fneq1d 6669 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↔ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
13 | 4, 12 | mpbiri 258 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3436 class class class wbr 5151 ↦ cmpt 5234 Fn wfn 6564 ‘cfv 6569 Basecbs 17254 lecple 17314 LHypclh 39981 LTrncltrn 40098 trLctrl 40155 DIsoAcdia 41025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-disoa 41026 |
This theorem is referenced by: diadm 41032 diaelrnN 41042 diaf11N 41046 |
Copyright terms: Public domain | W3C validator |