Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diafn Structured version   Visualization version   GIF version

Theorem diafn 41031
Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
diafn.b 𝐵 = (Base‘𝐾)
diafn.l = (le‘𝐾)
diafn.h 𝐻 = (LHyp‘𝐾)
diafn.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diafn ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑥𝐵𝑥 𝑊})
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝐾   𝑥,𝑊
Allowed substitution hints:   𝐻(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem diafn
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6927 . . . 4 ((LTrn‘𝐾)‘𝑊) ∈ V
21rabex 5348 . . 3 {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦} ∈ V
3 eqid 2737 . . 3 (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦}) = (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦})
42, 3fnmpti 6719 . 2 (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦}) Fn {𝑥𝐵𝑥 𝑊}
5 diafn.b . . . 4 𝐵 = (Base‘𝐾)
6 diafn.l . . . 4 = (le‘𝐾)
7 diafn.h . . . 4 𝐻 = (LHyp‘𝐾)
8 eqid 2737 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
9 eqid 2737 . . . 4 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
10 diafn.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
115, 6, 7, 8, 9, 10diafval 41028 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦}))
1211fneq1d 6669 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼 Fn {𝑥𝐵𝑥 𝑊} ↔ (𝑦 ∈ {𝑥𝐵𝑥 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) 𝑦}) Fn {𝑥𝐵𝑥 𝑊}))
134, 12mpbiri 258 1 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑥𝐵𝑥 𝑊})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3436   class class class wbr 5151  cmpt 5234   Fn wfn 6564  cfv 6569  Basecbs 17254  lecple 17314  LHypclh 39981  LTrncltrn 40098  trLctrl 40155  DIsoAcdia 41025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-disoa 41026
This theorem is referenced by:  diadm  41032  diaelrnN  41042  diaf11N  41046
  Copyright terms: Public domain W3C validator