![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diafn | Structured version Visualization version GIF version |
Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.) |
Ref | Expression |
---|---|
diafn.b | ⊢ 𝐵 = (Base‘𝐾) |
diafn.l | ⊢ ≤ = (le‘𝐾) |
diafn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diafn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diafn | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6424 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
2 | 1 | rabex 5007 | . . 3 ⊢ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦} ∈ V |
3 | eqid 2799 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) = (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) | |
4 | 2, 3 | fnmpti 6233 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} |
5 | diafn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | diafn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
7 | diafn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | eqid 2799 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
9 | eqid 2799 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
10 | diafn.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
11 | 5, 6, 7, 8, 9, 10 | diafval 37052 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦})) |
12 | 11 | fneq1d 6192 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↔ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓) ≤ 𝑦}) Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
13 | 4, 12 | mpbiri 250 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3093 class class class wbr 4843 ↦ cmpt 4922 Fn wfn 6096 ‘cfv 6101 Basecbs 16184 lecple 16274 LHypclh 36005 LTrncltrn 36122 trLctrl 36179 DIsoAcdia 37049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-disoa 37050 |
This theorem is referenced by: diadm 37056 diaelrnN 37066 diaf11N 37070 |
Copyright terms: Public domain | W3C validator |