![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diafn | Structured version Visualization version GIF version |
Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.) |
Ref | Expression |
---|---|
diafn.b | β’ π΅ = (BaseβπΎ) |
diafn.l | β’ β€ = (leβπΎ) |
diafn.h | β’ π» = (LHypβπΎ) |
diafn.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
diafn | β’ ((πΎ β π β§ π β π») β πΌ Fn {π₯ β π΅ β£ π₯ β€ π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6904 | . . . 4 β’ ((LTrnβπΎ)βπ) β V | |
2 | 1 | rabex 5332 | . . 3 β’ {π β ((LTrnβπΎ)βπ) β£ (((trLβπΎ)βπ)βπ) β€ π¦} β V |
3 | eqid 2732 | . . 3 β’ (π¦ β {π₯ β π΅ β£ π₯ β€ π} β¦ {π β ((LTrnβπΎ)βπ) β£ (((trLβπΎ)βπ)βπ) β€ π¦}) = (π¦ β {π₯ β π΅ β£ π₯ β€ π} β¦ {π β ((LTrnβπΎ)βπ) β£ (((trLβπΎ)βπ)βπ) β€ π¦}) | |
4 | 2, 3 | fnmpti 6693 | . 2 β’ (π¦ β {π₯ β π΅ β£ π₯ β€ π} β¦ {π β ((LTrnβπΎ)βπ) β£ (((trLβπΎ)βπ)βπ) β€ π¦}) Fn {π₯ β π΅ β£ π₯ β€ π} |
5 | diafn.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
6 | diafn.l | . . . 4 β’ β€ = (leβπΎ) | |
7 | diafn.h | . . . 4 β’ π» = (LHypβπΎ) | |
8 | eqid 2732 | . . . 4 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
9 | eqid 2732 | . . . 4 β’ ((trLβπΎ)βπ) = ((trLβπΎ)βπ) | |
10 | diafn.i | . . . 4 β’ πΌ = ((DIsoAβπΎ)βπ) | |
11 | 5, 6, 7, 8, 9, 10 | diafval 39897 | . . 3 β’ ((πΎ β π β§ π β π») β πΌ = (π¦ β {π₯ β π΅ β£ π₯ β€ π} β¦ {π β ((LTrnβπΎ)βπ) β£ (((trLβπΎ)βπ)βπ) β€ π¦})) |
12 | 11 | fneq1d 6642 | . 2 β’ ((πΎ β π β§ π β π») β (πΌ Fn {π₯ β π΅ β£ π₯ β€ π} β (π¦ β {π₯ β π΅ β£ π₯ β€ π} β¦ {π β ((LTrnβπΎ)βπ) β£ (((trLβπΎ)βπ)βπ) β€ π¦}) Fn {π₯ β π΅ β£ π₯ β€ π})) |
13 | 4, 12 | mpbiri 257 | 1 β’ ((πΎ β π β§ π β π») β πΌ Fn {π₯ β π΅ β£ π₯ β€ π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 class class class wbr 5148 β¦ cmpt 5231 Fn wfn 6538 βcfv 6543 Basecbs 17143 lecple 17203 LHypclh 38850 LTrncltrn 38967 trLctrl 39024 DIsoAcdia 39894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-disoa 39895 |
This theorem is referenced by: diadm 39901 diaelrnN 39911 diaf11N 39915 |
Copyright terms: Public domain | W3C validator |