Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibfnN Structured version   Visualization version   GIF version

Theorem dibfnN 40330
Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibfn.b 𝐡 = (Baseβ€˜πΎ)
dibfn.l ≀ = (leβ€˜πΎ)
dibfn.h 𝐻 = (LHypβ€˜πΎ)
dibfn.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibfnN ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
Distinct variable groups:   π‘₯, ≀   π‘₯,𝐡   π‘₯,𝐾   π‘₯,π‘Š
Allowed substitution hints:   𝐻(π‘₯)   𝐼(π‘₯)   𝑉(π‘₯)

Proof of Theorem dibfnN
StepHypRef Expression
1 dibfn.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 eqid 2732 . . 3 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
3 dibfn.i . . 3 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
41, 2, 3dibfna 40328 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn dom ((DIsoAβ€˜πΎ)β€˜π‘Š))
5 dibfn.b . . . 4 𝐡 = (Baseβ€˜πΎ)
6 dibfn.l . . . 4 ≀ = (leβ€˜πΎ)
75, 6, 1, 2diadm 40209 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ dom ((DIsoAβ€˜πΎ)β€˜π‘Š) = {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
87fneq2d 6643 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝐼 Fn dom ((DIsoAβ€˜πΎ)β€˜π‘Š) ↔ 𝐼 Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š}))
94, 8mpbid 231 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {π‘₯ ∈ 𝐡 ∣ π‘₯ ≀ π‘Š})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   class class class wbr 5148  dom cdm 5676   Fn wfn 6538  β€˜cfv 6543  Basecbs 17148  lecple 17208  LHypclh 39158  DIsoAcdia 40202  DIsoBcdib 40312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-disoa 40203  df-dib 40313
This theorem is referenced by:  dibdmN  40331  dibf11N  40335
  Copyright terms: Public domain W3C validator