| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibfnN | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dibfn.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibfn.l | ⊢ ≤ = (le‘𝐾) |
| dibfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibfn.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibfnN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibfn.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 3 | dibfn.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | dibfna 41263 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊)) |
| 5 | dibfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | dibfn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 7 | 5, 6, 1, 2 | diadm 41144 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
| 8 | 7 | fneq2d 6583 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊) ↔ 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
| 9 | 4, 8 | mpbid 232 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3397 class class class wbr 5095 dom cdm 5621 Fn wfn 6484 ‘cfv 6489 Basecbs 17130 lecple 17178 LHypclh 40093 DIsoAcdia 41137 DIsoBcdib 41247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-disoa 41138 df-dib 41248 |
| This theorem is referenced by: dibdmN 41266 dibf11N 41270 |
| Copyright terms: Public domain | W3C validator |