Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibfnN Structured version   Visualization version   GIF version

Theorem dibfnN 37685
Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibfn.b 𝐵 = (Base‘𝐾)
dibfn.l = (le‘𝐾)
dibfn.h 𝐻 = (LHyp‘𝐾)
dibfn.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibfnN ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑥𝐵𝑥 𝑊})
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝐾   𝑥,𝑊
Allowed substitution hints:   𝐻(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem dibfnN
StepHypRef Expression
1 dibfn.h . . 3 𝐻 = (LHyp‘𝐾)
2 eqid 2772 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
3 dibfn.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
41, 2, 3dibfna 37683 . 2 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊))
5 dibfn.b . . . 4 𝐵 = (Base‘𝐾)
6 dibfn.l . . . 4 = (le‘𝐾)
75, 6, 1, 2diadm 37564 . . 3 ((𝐾𝑉𝑊𝐻) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑥𝐵𝑥 𝑊})
87fneq2d 6274 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊) ↔ 𝐼 Fn {𝑥𝐵𝑥 𝑊}))
94, 8mpbid 224 1 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑥𝐵𝑥 𝑊})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  {crab 3086   class class class wbr 4923  dom cdm 5400   Fn wfn 6177  cfv 6182  Basecbs 16329  lecple 16418  LHypclh 36513  DIsoAcdia 37557  DIsoBcdib 37667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-disoa 37558  df-dib 37668
This theorem is referenced by:  dibdmN  37686  dibf11N  37690
  Copyright terms: Public domain W3C validator