Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval1st2N Structured version   Visualization version   GIF version

Theorem dibelval1st2N 41134
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibelval1st2.b 𝐵 = (Base‘𝐾)
dibelval1st2.l = (le‘𝐾)
dibelval1st2.h 𝐻 = (LHyp‘𝐾)
dibelval1st2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibelval1st2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibelval1st2.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval1st2N (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (𝑅‘(1st𝑌)) 𝑋)

Proof of Theorem dibelval1st2N
StepHypRef Expression
1 dibelval1st2.b . . 3 𝐵 = (Base‘𝐾)
2 dibelval1st2.l . . 3 = (le‘𝐾)
3 dibelval1st2.h . . 3 𝐻 = (LHyp‘𝐾)
4 eqid 2735 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
5 dibelval1st2.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
61, 2, 3, 4, 5dibelval1st 41132 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7 dibelval1st2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dibelval1st2.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
91, 2, 3, 7, 8, 4diatrl 41027 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (𝑅‘(1st𝑌)) 𝑋)
106, 9syld3an3 1408 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (𝑅‘(1st𝑌)) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  1st c1st 8011  Basecbs 17245  lecple 17305  LHypclh 39967  LTrncltrn 40084  trLctrl 40141  DIsoAcdia 41011  DIsoBcdib 41121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1st 8013  df-disoa 41012  df-dib 41122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator