Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval1st2N Structured version   Visualization version   GIF version

Theorem dibelval1st2N 38902
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibelval1st2.b 𝐵 = (Base‘𝐾)
dibelval1st2.l = (le‘𝐾)
dibelval1st2.h 𝐻 = (LHyp‘𝐾)
dibelval1st2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibelval1st2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibelval1st2.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval1st2N (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (𝑅‘(1st𝑌)) 𝑋)

Proof of Theorem dibelval1st2N
StepHypRef Expression
1 dibelval1st2.b . . 3 𝐵 = (Base‘𝐾)
2 dibelval1st2.l . . 3 = (le‘𝐾)
3 dibelval1st2.h . . 3 𝐻 = (LHyp‘𝐾)
4 eqid 2737 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
5 dibelval1st2.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
61, 2, 3, 4, 5dibelval1st 38900 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7 dibelval1st2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dibelval1st2.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
91, 2, 3, 7, 8, 4diatrl 38795 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (𝑅‘(1st𝑌)) 𝑋)
106, 9syld3an3 1411 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (𝑅‘(1st𝑌)) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  1st c1st 7759  Basecbs 16760  lecple 16809  LHypclh 37735  LTrncltrn 37852  trLctrl 37909  DIsoAcdia 38779  DIsoBcdib 38889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-1st 7761  df-disoa 38780  df-dib 38890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator