| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibelval1st2N | Structured version Visualization version GIF version | ||
| Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dibelval1st2.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibelval1st2.l | ⊢ ≤ = (le‘𝐾) |
| dibelval1st2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibelval1st2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibelval1st2.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dibelval1st2.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibelval1st2N | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibelval1st2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibelval1st2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | dibelval1st2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | eqid 2729 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | dibelval1st2.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | dibelval1st 41143 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
| 7 | dibelval1st2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | dibelval1st2.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 9 | 1, 2, 3, 7, 8, 4 | diatrl 41038 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (1st ‘𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) |
| 10 | 6, 9 | syld3an3 1411 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 1st c1st 7966 Basecbs 17179 lecple 17227 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 DIsoAcdia 41022 DIsoBcdib 41132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1st 7968 df-disoa 41023 df-dib 41133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |