| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibelval1st2N | Structured version Visualization version GIF version | ||
| Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dibelval1st2.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibelval1st2.l | ⊢ ≤ = (le‘𝐾) |
| dibelval1st2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibelval1st2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibelval1st2.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dibelval1st2.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibelval1st2N | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibelval1st2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibelval1st2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | dibelval1st2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | eqid 2736 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | dibelval1st2.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | dibelval1st 41152 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
| 7 | dibelval1st2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | dibelval1st2.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 9 | 1, 2, 3, 7, 8, 4 | diatrl 41047 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (1st ‘𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) |
| 10 | 6, 9 | syld3an3 1410 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 1st c1st 8013 Basecbs 17248 lecple 17305 LHypclh 39987 LTrncltrn 40104 trLctrl 40161 DIsoAcdia 41031 DIsoBcdib 41141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-1st 8015 df-disoa 41032 df-dib 41142 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |