Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaelrnN Structured version   Visualization version   GIF version

Theorem diaelrnN 38986
Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaelrn.h 𝐻 = (LHyp‘𝐾)
diaelrn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaelrn.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaelrnN (((𝐾𝑉𝑊𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆𝑇)

Proof of Theorem diaelrnN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
3 diaelrn.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 diaelrn.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
51, 2, 3, 4diafn 38975 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
6 fvelrnb 6812 . . . 4 (𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼𝑥) = 𝑆))
75, 6syl 17 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼𝑥) = 𝑆))
8 breq1 5073 . . . . . 6 (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊𝑥(le‘𝐾)𝑊))
98elrab 3617 . . . . 5 (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
10 diaelrn.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
111, 2, 3, 10, 4diass 38983 . . . . . . 7 (((𝐾𝑉𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐼𝑥) ⊆ 𝑇)
1211ex 412 . . . . . 6 ((𝐾𝑉𝑊𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐼𝑥) ⊆ 𝑇))
13 sseq1 3942 . . . . . . 7 ((𝐼𝑥) = 𝑆 → ((𝐼𝑥) ⊆ 𝑇𝑆𝑇))
1413biimpcd 248 . . . . . 6 ((𝐼𝑥) ⊆ 𝑇 → ((𝐼𝑥) = 𝑆𝑆𝑇))
1512, 14syl6 35 . . . . 5 ((𝐾𝑉𝑊𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐼𝑥) = 𝑆𝑆𝑇)))
169, 15syl5bi 241 . . . 4 ((𝐾𝑉𝑊𝐻) → (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → ((𝐼𝑥) = 𝑆𝑆𝑇)))
1716rexlimdv 3211 . . 3 ((𝐾𝑉𝑊𝐻) → (∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼𝑥) = 𝑆𝑆𝑇))
187, 17sylbid 239 . 2 ((𝐾𝑉𝑊𝐻) → (𝑆 ∈ ran 𝐼𝑆𝑇))
1918imp 406 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  wss 3883   class class class wbr 5070  ran crn 5581   Fn wfn 6413  cfv 6418  Basecbs 16840  lecple 16895  LHypclh 37925  LTrncltrn 38042  DIsoAcdia 38969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-disoa 38970
This theorem is referenced by:  dvadiaN  39069  djaclN  39077  djajN  39078
  Copyright terms: Public domain W3C validator