Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaelrnN | Structured version Visualization version GIF version |
Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diaelrn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaelrn.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaelrn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaelrnN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | diaelrn.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaelrn.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | diafn 39048 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
6 | fvelrnb 6830 | . . . 4 ⊢ (𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) |
8 | breq1 5077 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊 ↔ 𝑥(le‘𝐾)𝑊)) | |
9 | 8 | elrab 3624 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
10 | diaelrn.t | . . . . . . . 8 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | 1, 2, 3, 10, 4 | diass 39056 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐼‘𝑥) ⊆ 𝑇) |
12 | 11 | ex 413 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐼‘𝑥) ⊆ 𝑇)) |
13 | sseq1 3946 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = 𝑆 → ((𝐼‘𝑥) ⊆ 𝑇 ↔ 𝑆 ⊆ 𝑇)) | |
14 | 13 | biimpcd 248 | . . . . . 6 ⊢ ((𝐼‘𝑥) ⊆ 𝑇 → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) |
15 | 12, 14 | syl6 35 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) |
16 | 9, 15 | syl5bi 241 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) |
17 | 16 | rexlimdv 3212 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) |
18 | 7, 17 | sylbid 239 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 → 𝑆 ⊆ 𝑇)) |
19 | 18 | imp 407 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 ⊆ wss 3887 class class class wbr 5074 ran crn 5590 Fn wfn 6428 ‘cfv 6433 Basecbs 16912 lecple 16969 LHypclh 37998 LTrncltrn 38115 DIsoAcdia 39042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-disoa 39043 |
This theorem is referenced by: dvadiaN 39142 djaclN 39150 djajN 39151 |
Copyright terms: Public domain | W3C validator |