Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaelrnN Structured version   Visualization version   GIF version

Theorem diaelrnN 39916
Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaelrn.h 𝐻 = (LHypβ€˜πΎ)
diaelrn.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
diaelrn.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
diaelrnN (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) β†’ 𝑆 βŠ† 𝑇)

Proof of Theorem diaelrnN
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 eqid 2733 . . . . 5 (leβ€˜πΎ) = (leβ€˜πΎ)
3 diaelrn.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
4 diaelrn.i . . . . 5 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4diafn 39905 . . . 4 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š})
6 fvelrnb 6953 . . . 4 (𝐼 Fn {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š} β†’ (𝑆 ∈ ran 𝐼 ↔ βˆƒπ‘₯ ∈ {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š} (πΌβ€˜π‘₯) = 𝑆))
75, 6syl 17 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝑆 ∈ ran 𝐼 ↔ βˆƒπ‘₯ ∈ {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š} (πΌβ€˜π‘₯) = 𝑆))
8 breq1 5152 . . . . . 6 (𝑦 = π‘₯ β†’ (𝑦(leβ€˜πΎ)π‘Š ↔ π‘₯(leβ€˜πΎ)π‘Š))
98elrab 3684 . . . . 5 (π‘₯ ∈ {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š} ↔ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š))
10 diaelrn.t . . . . . . . 8 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
111, 2, 3, 10, 4diass 39913 . . . . . . 7 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š)) β†’ (πΌβ€˜π‘₯) βŠ† 𝑇)
1211ex 414 . . . . . 6 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ ((π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ (πΌβ€˜π‘₯) βŠ† 𝑇))
13 sseq1 4008 . . . . . . 7 ((πΌβ€˜π‘₯) = 𝑆 β†’ ((πΌβ€˜π‘₯) βŠ† 𝑇 ↔ 𝑆 βŠ† 𝑇))
1413biimpcd 248 . . . . . 6 ((πΌβ€˜π‘₯) βŠ† 𝑇 β†’ ((πΌβ€˜π‘₯) = 𝑆 β†’ 𝑆 βŠ† 𝑇))
1512, 14syl6 35 . . . . 5 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ ((π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ ((πΌβ€˜π‘₯) = 𝑆 β†’ 𝑆 βŠ† 𝑇)))
169, 15biimtrid 241 . . . 4 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (π‘₯ ∈ {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š} β†’ ((πΌβ€˜π‘₯) = 𝑆 β†’ 𝑆 βŠ† 𝑇)))
1716rexlimdv 3154 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (βˆƒπ‘₯ ∈ {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š} (πΌβ€˜π‘₯) = 𝑆 β†’ 𝑆 βŠ† 𝑇))
187, 17sylbid 239 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝑆 ∈ ran 𝐼 β†’ 𝑆 βŠ† 𝑇))
1918imp 408 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) β†’ 𝑆 βŠ† 𝑇)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433   βŠ† wss 3949   class class class wbr 5149  ran crn 5678   Fn wfn 6539  β€˜cfv 6544  Basecbs 17144  lecple 17204  LHypclh 38855  LTrncltrn 38972  DIsoAcdia 39899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-disoa 39900
This theorem is referenced by:  dvadiaN  39999  djaclN  40007  djajN  40008
  Copyright terms: Public domain W3C validator