![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaelrnN | Structured version Visualization version GIF version |
Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diaelrn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaelrn.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaelrn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaelrnN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2728 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | diaelrn.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaelrn.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | diafn 40507 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
6 | fvelrnb 6959 | . . . 4 ⊢ (𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) |
8 | breq1 5151 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊 ↔ 𝑥(le‘𝐾)𝑊)) | |
9 | 8 | elrab 3682 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
10 | diaelrn.t | . . . . . . . 8 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | 1, 2, 3, 10, 4 | diass 40515 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐼‘𝑥) ⊆ 𝑇) |
12 | 11 | ex 412 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐼‘𝑥) ⊆ 𝑇)) |
13 | sseq1 4005 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = 𝑆 → ((𝐼‘𝑥) ⊆ 𝑇 ↔ 𝑆 ⊆ 𝑇)) | |
14 | 13 | biimpcd 248 | . . . . . 6 ⊢ ((𝐼‘𝑥) ⊆ 𝑇 → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) |
15 | 12, 14 | syl6 35 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) |
16 | 9, 15 | biimtrid 241 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) |
17 | 16 | rexlimdv 3150 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) |
18 | 7, 17 | sylbid 239 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 → 𝑆 ⊆ 𝑇)) |
19 | 18 | imp 406 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 {crab 3429 ⊆ wss 3947 class class class wbr 5148 ran crn 5679 Fn wfn 6543 ‘cfv 6548 Basecbs 17179 lecple 17239 LHypclh 39457 LTrncltrn 39574 DIsoAcdia 40501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-disoa 40502 |
This theorem is referenced by: dvadiaN 40601 djaclN 40609 djajN 40610 |
Copyright terms: Public domain | W3C validator |