|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diaelrnN | Structured version Visualization version GIF version | ||
| Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| diaelrn.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| diaelrn.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| diaelrn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | 
| Ref | Expression | 
|---|---|
| diaelrnN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2737 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | diaelrn.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | diaelrn.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | diafn 41036 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) | 
| 6 | fvelrnb 6969 | . . . 4 ⊢ (𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) | 
| 8 | breq1 5146 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊 ↔ 𝑥(le‘𝐾)𝑊)) | |
| 9 | 8 | elrab 3692 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) | 
| 10 | diaelrn.t | . . . . . . . 8 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 11 | 1, 2, 3, 10, 4 | diass 41044 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐼‘𝑥) ⊆ 𝑇) | 
| 12 | 11 | ex 412 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐼‘𝑥) ⊆ 𝑇)) | 
| 13 | sseq1 4009 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = 𝑆 → ((𝐼‘𝑥) ⊆ 𝑇 ↔ 𝑆 ⊆ 𝑇)) | |
| 14 | 13 | biimpcd 249 | . . . . . 6 ⊢ ((𝐼‘𝑥) ⊆ 𝑇 → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) | 
| 15 | 12, 14 | syl6 35 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) | 
| 16 | 9, 15 | biimtrid 242 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) | 
| 17 | 16 | rexlimdv 3153 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) | 
| 18 | 7, 17 | sylbid 240 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 → 𝑆 ⊆ 𝑇)) | 
| 19 | 18 | imp 406 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 ⊆ wss 3951 class class class wbr 5143 ran crn 5686 Fn wfn 6556 ‘cfv 6561 Basecbs 17247 lecple 17304 LHypclh 39986 LTrncltrn 40103 DIsoAcdia 41030 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-disoa 41031 | 
| This theorem is referenced by: dvadiaN 41130 djaclN 41138 djajN 41139 | 
| Copyright terms: Public domain | W3C validator |