Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaelrnN Structured version   Visualization version   GIF version

Theorem diaelrnN 41044
Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaelrn.h 𝐻 = (LHyp‘𝐾)
diaelrn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaelrn.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaelrnN (((𝐾𝑉𝑊𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆𝑇)

Proof of Theorem diaelrnN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
3 diaelrn.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 diaelrn.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
51, 2, 3, 4diafn 41033 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
6 fvelrnb 6883 . . . 4 (𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼𝑥) = 𝑆))
75, 6syl 17 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼𝑥) = 𝑆))
8 breq1 5095 . . . . . 6 (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊𝑥(le‘𝐾)𝑊))
98elrab 3648 . . . . 5 (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
10 diaelrn.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
111, 2, 3, 10, 4diass 41041 . . . . . . 7 (((𝐾𝑉𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐼𝑥) ⊆ 𝑇)
1211ex 412 . . . . . 6 ((𝐾𝑉𝑊𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐼𝑥) ⊆ 𝑇))
13 sseq1 3961 . . . . . . 7 ((𝐼𝑥) = 𝑆 → ((𝐼𝑥) ⊆ 𝑇𝑆𝑇))
1413biimpcd 249 . . . . . 6 ((𝐼𝑥) ⊆ 𝑇 → ((𝐼𝑥) = 𝑆𝑆𝑇))
1512, 14syl6 35 . . . . 5 ((𝐾𝑉𝑊𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐼𝑥) = 𝑆𝑆𝑇)))
169, 15biimtrid 242 . . . 4 ((𝐾𝑉𝑊𝐻) → (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → ((𝐼𝑥) = 𝑆𝑆𝑇)))
1716rexlimdv 3128 . . 3 ((𝐾𝑉𝑊𝐻) → (∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼𝑥) = 𝑆𝑆𝑇))
187, 17sylbid 240 . 2 ((𝐾𝑉𝑊𝐻) → (𝑆 ∈ ran 𝐼𝑆𝑇))
1918imp 406 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  wss 3903   class class class wbr 5092  ran crn 5620   Fn wfn 6477  cfv 6482  Basecbs 17120  lecple 17168  LHypclh 39983  LTrncltrn 40100  DIsoAcdia 41027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-disoa 41028
This theorem is referenced by:  dvadiaN  41127  djaclN  41135  djajN  41136
  Copyright terms: Public domain W3C validator