| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diaelrnN | Structured version Visualization version GIF version | ||
| Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| diaelrn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| diaelrn.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| diaelrn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| diaelrnN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2735 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | diaelrn.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | diaelrn.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | diafn 41053 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 6 | fvelrnb 6939 | . . . 4 ⊢ (𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) |
| 8 | breq1 5122 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊 ↔ 𝑥(le‘𝐾)𝑊)) | |
| 9 | 8 | elrab 3671 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
| 10 | diaelrn.t | . . . . . . . 8 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 11 | 1, 2, 3, 10, 4 | diass 41061 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐼‘𝑥) ⊆ 𝑇) |
| 12 | 11 | ex 412 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐼‘𝑥) ⊆ 𝑇)) |
| 13 | sseq1 3984 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = 𝑆 → ((𝐼‘𝑥) ⊆ 𝑇 ↔ 𝑆 ⊆ 𝑇)) | |
| 14 | 13 | biimpcd 249 | . . . . . 6 ⊢ ((𝐼‘𝑥) ⊆ 𝑇 → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) |
| 15 | 12, 14 | syl6 35 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) |
| 16 | 9, 15 | biimtrid 242 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) |
| 17 | 16 | rexlimdv 3139 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) |
| 18 | 7, 17 | sylbid 240 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 → 𝑆 ⊆ 𝑇)) |
| 19 | 18 | imp 406 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 ⊆ wss 3926 class class class wbr 5119 ran crn 5655 Fn wfn 6526 ‘cfv 6531 Basecbs 17228 lecple 17278 LHypclh 40003 LTrncltrn 40120 DIsoAcdia 41047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-disoa 41048 |
| This theorem is referenced by: dvadiaN 41147 djaclN 41155 djajN 41156 |
| Copyright terms: Public domain | W3C validator |