Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaelrnN Structured version   Visualization version   GIF version

Theorem diaelrnN 41064
Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaelrn.h 𝐻 = (LHyp‘𝐾)
diaelrn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaelrn.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaelrnN (((𝐾𝑉𝑊𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆𝑇)

Proof of Theorem diaelrnN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2735 . . . . 5 (le‘𝐾) = (le‘𝐾)
3 diaelrn.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 diaelrn.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
51, 2, 3, 4diafn 41053 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
6 fvelrnb 6939 . . . 4 (𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼𝑥) = 𝑆))
75, 6syl 17 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼𝑥) = 𝑆))
8 breq1 5122 . . . . . 6 (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊𝑥(le‘𝐾)𝑊))
98elrab 3671 . . . . 5 (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
10 diaelrn.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
111, 2, 3, 10, 4diass 41061 . . . . . . 7 (((𝐾𝑉𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐼𝑥) ⊆ 𝑇)
1211ex 412 . . . . . 6 ((𝐾𝑉𝑊𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐼𝑥) ⊆ 𝑇))
13 sseq1 3984 . . . . . . 7 ((𝐼𝑥) = 𝑆 → ((𝐼𝑥) ⊆ 𝑇𝑆𝑇))
1413biimpcd 249 . . . . . 6 ((𝐼𝑥) ⊆ 𝑇 → ((𝐼𝑥) = 𝑆𝑆𝑇))
1512, 14syl6 35 . . . . 5 ((𝐾𝑉𝑊𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐼𝑥) = 𝑆𝑆𝑇)))
169, 15biimtrid 242 . . . 4 ((𝐾𝑉𝑊𝐻) → (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → ((𝐼𝑥) = 𝑆𝑆𝑇)))
1716rexlimdv 3139 . . 3 ((𝐾𝑉𝑊𝐻) → (∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼𝑥) = 𝑆𝑆𝑇))
187, 17sylbid 240 . 2 ((𝐾𝑉𝑊𝐻) → (𝑆 ∈ ran 𝐼𝑆𝑇))
1918imp 406 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  wss 3926   class class class wbr 5119  ran crn 5655   Fn wfn 6526  cfv 6531  Basecbs 17228  lecple 17278  LHypclh 40003  LTrncltrn 40120  DIsoAcdia 41047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-disoa 41048
This theorem is referenced by:  dvadiaN  41147  djaclN  41155  djajN  41156
  Copyright terms: Public domain W3C validator