![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaelrnN | Structured version Visualization version GIF version |
Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diaelrn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaelrn.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaelrn.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaelrnN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2799 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | diaelrn.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaelrn.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | diafn 37055 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
6 | fvelrnb 6468 | . . . 4 ⊢ (𝐼 Fn {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 ↔ ∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆)) |
8 | breq1 4846 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦(le‘𝐾)𝑊 ↔ 𝑥(le‘𝐾)𝑊)) | |
9 | 8 | elrab 3556 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
10 | diaelrn.t | . . . . . . . 8 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | 1, 2, 3, 10, 4 | diass 37063 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐼‘𝑥) ⊆ 𝑇) |
12 | 11 | ex 402 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐼‘𝑥) ⊆ 𝑇)) |
13 | sseq1 3822 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = 𝑆 → ((𝐼‘𝑥) ⊆ 𝑇 ↔ 𝑆 ⊆ 𝑇)) | |
14 | 13 | biimpcd 241 | . . . . . 6 ⊢ ((𝐼‘𝑥) ⊆ 𝑇 → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) |
15 | 12, 14 | syl6 35 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) |
16 | 9, 15 | syl5bi 234 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} → ((𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇))) |
17 | 16 | rexlimdv 3211 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (∃𝑥 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} (𝐼‘𝑥) = 𝑆 → 𝑆 ⊆ 𝑇)) |
18 | 7, 17 | sylbid 232 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ ran 𝐼 → 𝑆 ⊆ 𝑇)) |
19 | 18 | imp 396 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ ran 𝐼) → 𝑆 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 {crab 3093 ⊆ wss 3769 class class class wbr 4843 ran crn 5313 Fn wfn 6096 ‘cfv 6101 Basecbs 16184 lecple 16274 LHypclh 36005 LTrncltrn 36122 DIsoAcdia 37049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-disoa 37050 |
This theorem is referenced by: dvadiaN 37149 djaclN 37157 djajN 37158 |
Copyright terms: Public domain | W3C validator |