![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaelval | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism A for a lattice πΎ. (Contributed by NM, 3-Dec-2013.) |
Ref | Expression |
---|---|
diaval.b | β’ π΅ = (BaseβπΎ) |
diaval.l | β’ β€ = (leβπΎ) |
diaval.h | β’ π» = (LHypβπΎ) |
diaval.t | β’ π = ((LTrnβπΎ)βπ) |
diaval.r | β’ π = ((trLβπΎ)βπ) |
diaval.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
diaelval | β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΉ β (πΌβπ) β (πΉ β π β§ (π βπΉ) β€ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diaval.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | diaval.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | diaval.h | . . . 4 β’ π» = (LHypβπΎ) | |
4 | diaval.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
5 | diaval.r | . . . 4 β’ π = ((trLβπΎ)βπ) | |
6 | diaval.i | . . . 4 β’ πΌ = ((DIsoAβπΎ)βπ) | |
7 | 1, 2, 3, 4, 5, 6 | diaval 40505 | . . 3 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = {π β π β£ (π βπ) β€ π}) |
8 | 7 | eleq2d 2815 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΉ β (πΌβπ) β πΉ β {π β π β£ (π βπ) β€ π})) |
9 | fveq2 6897 | . . . 4 β’ (π = πΉ β (π βπ) = (π βπΉ)) | |
10 | 9 | breq1d 5158 | . . 3 β’ (π = πΉ β ((π βπ) β€ π β (π βπΉ) β€ π)) |
11 | 10 | elrab 3682 | . 2 β’ (πΉ β {π β π β£ (π βπ) β€ π} β (πΉ β π β§ (π βπΉ) β€ π)) |
12 | 8, 11 | bitrdi 287 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΉ β (πΌβπ) β (πΉ β π β§ (π βπΉ) β€ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 {crab 3429 class class class wbr 5148 βcfv 6548 Basecbs 17180 lecple 17240 LHypclh 39457 LTrncltrn 39574 trLctrl 39631 DIsoAcdia 40501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-disoa 40502 |
This theorem is referenced by: dian0 40512 diatrl 40517 dialss 40519 diaglbN 40528 dibelval3 40620 dibopelval3 40621 diblss 40643 |
Copyright terms: Public domain | W3C validator |