Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaelval Structured version   Visualization version   GIF version

Theorem diaelval 41000
Description: Member of the partial isomorphism A for a lattice 𝐾. (Contributed by NM, 3-Dec-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
diaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaval.r 𝑅 = ((trL‘𝐾)‘𝑊)
diaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaelval (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))

Proof of Theorem diaelval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 diaval.b . . . 4 𝐵 = (Base‘𝐾)
2 diaval.l . . . 4 = (le‘𝐾)
3 diaval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 diaval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 diaval.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
6 diaval.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6diaval 40999 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
87eleq2d 2814 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ 𝐹 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑋}))
9 fveq2 6840 . . . 4 (𝑓 = 𝐹 → (𝑅𝑓) = (𝑅𝐹))
109breq1d 5112 . . 3 (𝑓 = 𝐹 → ((𝑅𝑓) 𝑋 ↔ (𝑅𝐹) 𝑋))
1110elrab 3656 . 2 (𝐹 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑋} ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋))
128, 11bitrdi 287 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3402   class class class wbr 5102  cfv 6499  Basecbs 17155  lecple 17203  LHypclh 39951  LTrncltrn 40068  trLctrl 40125  DIsoAcdia 40995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-disoa 40996
This theorem is referenced by:  dian0  41006  diatrl  41011  dialss  41013  diaglbN  41022  dibelval3  41114  dibopelval3  41115  diblss  41137
  Copyright terms: Public domain W3C validator