![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaelval | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism A for a lattice 𝐾. (Contributed by NM, 3-Dec-2013.) |
Ref | Expression |
---|---|
diaval.b | ⊢ 𝐵 = (Base‘𝐾) |
diaval.l | ⊢ ≤ = (le‘𝐾) |
diaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaval.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
diaval.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaelval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diaval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | diaval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | diaval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | diaval.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | diaval.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | diaval 37053 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
8 | 7 | eleq2d 2864 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (𝐼‘𝑋) ↔ 𝐹 ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋})) |
9 | fveq2 6411 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑅‘𝑓) = (𝑅‘𝐹)) | |
10 | 9 | breq1d 4853 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑅‘𝑓) ≤ 𝑋 ↔ (𝑅‘𝐹) ≤ 𝑋)) |
11 | 10 | elrab 3556 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋)) |
12 | 8, 11 | syl6bb 279 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3093 class class class wbr 4843 ‘cfv 6101 Basecbs 16184 lecple 16274 LHypclh 36005 LTrncltrn 36122 trLctrl 36179 DIsoAcdia 37049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-disoa 37050 |
This theorem is referenced by: dian0 37060 diatrl 37065 dialss 37067 diaglbN 37076 dibelval3 37168 dibopelval3 37169 diblss 37191 |
Copyright terms: Public domain | W3C validator |