Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaelval | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism A for a lattice 𝐾. (Contributed by NM, 3-Dec-2013.) |
Ref | Expression |
---|---|
diaval.b | ⊢ 𝐵 = (Base‘𝐾) |
diaval.l | ⊢ ≤ = (le‘𝐾) |
diaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaval.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
diaval.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaelval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diaval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | diaval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | diaval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | diaval.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | diaval.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | diaval 39055 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
8 | 7 | eleq2d 2826 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (𝐼‘𝑋) ↔ 𝐹 ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋})) |
9 | fveq2 6771 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑅‘𝑓) = (𝑅‘𝐹)) | |
10 | 9 | breq1d 5089 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑅‘𝑓) ≤ 𝑋 ↔ (𝑅‘𝐹) ≤ 𝑋)) |
11 | 10 | elrab 3626 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋)) |
12 | 8, 11 | bitrdi 287 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {crab 3070 class class class wbr 5079 ‘cfv 6432 Basecbs 16923 lecple 16980 LHypclh 38007 LTrncltrn 38124 trLctrl 38181 DIsoAcdia 39051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-disoa 39052 |
This theorem is referenced by: dian0 39062 diatrl 39067 dialss 39069 diaglbN 39078 dibelval3 39170 dibopelval3 39171 diblss 39193 |
Copyright terms: Public domain | W3C validator |