Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaelval Structured version   Visualization version   GIF version

Theorem diaelval 41080
Description: Member of the partial isomorphism A for a lattice 𝐾. (Contributed by NM, 3-Dec-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
diaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaval.r 𝑅 = ((trL‘𝐾)‘𝑊)
diaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaelval (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))

Proof of Theorem diaelval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 diaval.b . . . 4 𝐵 = (Base‘𝐾)
2 diaval.l . . . 4 = (le‘𝐾)
3 diaval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 diaval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 diaval.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
6 diaval.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6diaval 41079 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
87eleq2d 2817 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ 𝐹 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑋}))
9 fveq2 6822 . . . 4 (𝑓 = 𝐹 → (𝑅𝑓) = (𝑅𝐹))
109breq1d 5099 . . 3 (𝑓 = 𝐹 → ((𝑅𝑓) 𝑋 ↔ (𝑅𝐹) 𝑋))
1110elrab 3642 . 2 (𝐹 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑋} ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋))
128, 11bitrdi 287 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168  LHypclh 40031  LTrncltrn 40148  trLctrl 40205  DIsoAcdia 41075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-disoa 41076
This theorem is referenced by:  dian0  41086  diatrl  41091  dialss  41093  diaglbN  41102  dibelval3  41194  dibopelval3  41195  diblss  41217
  Copyright terms: Public domain W3C validator