Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaelval Structured version   Visualization version   GIF version

Theorem diaelval 38163
Description: Member of the partial isomorphism A for a lattice 𝐾. (Contributed by NM, 3-Dec-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
diaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaval.r 𝑅 = ((trL‘𝐾)‘𝑊)
diaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaelval (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))

Proof of Theorem diaelval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 diaval.b . . . 4 𝐵 = (Base‘𝐾)
2 diaval.l . . . 4 = (le‘𝐾)
3 diaval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 diaval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 diaval.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
6 diaval.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6diaval 38162 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
87eleq2d 2898 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ 𝐹 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑋}))
9 fveq2 6665 . . . 4 (𝑓 = 𝐹 → (𝑅𝑓) = (𝑅𝐹))
109breq1d 5069 . . 3 (𝑓 = 𝐹 → ((𝑅𝑓) 𝑋 ↔ (𝑅𝐹) 𝑋))
1110elrab 3680 . 2 (𝐹 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑋} ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋))
128, 11syl6bb 289 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {crab 3142   class class class wbr 5059  cfv 6350  Basecbs 16477  lecple 16566  LHypclh 37114  LTrncltrn 37231  trLctrl 37288  DIsoAcdia 38158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-disoa 38159
This theorem is referenced by:  dian0  38169  diatrl  38174  dialss  38176  diaglbN  38185  dibelval3  38277  dibopelval3  38278  diblss  38300
  Copyright terms: Public domain W3C validator