![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaelval | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism A for a lattice πΎ. (Contributed by NM, 3-Dec-2013.) |
Ref | Expression |
---|---|
diaval.b | β’ π΅ = (BaseβπΎ) |
diaval.l | β’ β€ = (leβπΎ) |
diaval.h | β’ π» = (LHypβπΎ) |
diaval.t | β’ π = ((LTrnβπΎ)βπ) |
diaval.r | β’ π = ((trLβπΎ)βπ) |
diaval.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
diaelval | β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΉ β (πΌβπ) β (πΉ β π β§ (π βπΉ) β€ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diaval.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | diaval.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | diaval.h | . . . 4 β’ π» = (LHypβπΎ) | |
4 | diaval.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
5 | diaval.r | . . . 4 β’ π = ((trLβπΎ)βπ) | |
6 | diaval.i | . . . 4 β’ πΌ = ((DIsoAβπΎ)βπ) | |
7 | 1, 2, 3, 4, 5, 6 | diaval 39898 | . . 3 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = {π β π β£ (π βπ) β€ π}) |
8 | 7 | eleq2d 2819 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΉ β (πΌβπ) β πΉ β {π β π β£ (π βπ) β€ π})) |
9 | fveq2 6891 | . . . 4 β’ (π = πΉ β (π βπ) = (π βπΉ)) | |
10 | 9 | breq1d 5158 | . . 3 β’ (π = πΉ β ((π βπ) β€ π β (π βπΉ) β€ π)) |
11 | 10 | elrab 3683 | . 2 β’ (πΉ β {π β π β£ (π βπ) β€ π} β (πΉ β π β§ (π βπΉ) β€ π)) |
12 | 8, 11 | bitrdi 286 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΉ β (πΌβπ) β (πΉ β π β§ (π βπΉ) β€ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 class class class wbr 5148 βcfv 6543 Basecbs 17143 lecple 17203 LHypclh 38850 LTrncltrn 38967 trLctrl 39024 DIsoAcdia 39894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-disoa 39895 |
This theorem is referenced by: dian0 39905 diatrl 39910 dialss 39912 diaglbN 39921 dibelval3 40013 dibopelval3 40014 diblss 40036 |
Copyright terms: Public domain | W3C validator |