Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicdmN | Structured version Visualization version GIF version |
Description: Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dicfn.l | ⊢ ≤ = (le‘𝐾) |
dicfn.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicfn.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dicdmN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicfn.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | dicfn.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicfn.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicfn.i | . . 3 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | dicfnN 39197 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) |
6 | 5 | fndmd 6538 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 lecple 16969 Atomscatm 37277 LHypclh 37998 DIsoCcdic 39186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-dic 39187 |
This theorem is referenced by: dicvalrelN 39199 |
Copyright terms: Public domain | W3C validator |