![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicdmN | Structured version Visualization version GIF version |
Description: Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dicfn.l | ⊢ ≤ = (le‘𝐾) |
dicfn.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicfn.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dicdmN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicfn.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | dicfn.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicfn.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicfn.i | . . 3 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | dicfnN 41140 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) |
6 | 5 | fndmd 6684 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 lecple 17318 Atomscatm 39219 LHypclh 39941 DIsoCcdic 41129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-dic 41130 |
This theorem is referenced by: dicvalrelN 41142 |
Copyright terms: Public domain | W3C validator |