Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfnN Structured version   Visualization version   GIF version

Theorem dicfnN 38934
Description: Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicfn.l = (le‘𝐾)
dicfn.a 𝐴 = (Atoms‘𝐾)
dicfn.h 𝐻 = (LHyp‘𝐾)
dicfn.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicfnN ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐾,𝑝   𝑊,𝑝
Allowed substitution hints:   𝐻(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem dicfnN
Dummy variables 𝑞 𝑓 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5056 . . . . . . 7 (𝑝 = 𝑞 → (𝑝 𝑊𝑞 𝑊))
21notbid 321 . . . . . 6 (𝑝 = 𝑞 → (¬ 𝑝 𝑊 ↔ ¬ 𝑞 𝑊))
32elrab 3602 . . . . 5 (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↔ (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
4 dicfn.l . . . . . . 7 = (le‘𝐾)
5 dicfn.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 dicfn.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
7 eqid 2737 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
8 eqid 2737 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
9 eqid 2737 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
10 dicfn.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10dicval 38927 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐼𝑞) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
12 fvex 6730 . . . . . 6 (𝐼𝑞) ∈ V
1311, 12eqeltrrdi 2847 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
143, 13sylan2b 597 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊}) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
1514ralrimiva 3105 . . 3 ((𝐾𝑉𝑊𝐻) → ∀𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
16 eqid 2737 . . . 4 (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) = (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1716fnmpt 6518 . . 3 (∀𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V → (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
1815, 17syl 17 . 2 ((𝐾𝑉𝑊𝐻) → (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
194, 5, 6, 7, 8, 9, 10dicfval 38926 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
2019fneq1d 6472 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↔ (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊}))
2118, 20mpbird 260 1 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  {crab 3065  Vcvv 3408   class class class wbr 5053  {copab 5115  cmpt 5135   Fn wfn 6375  cfv 6380  crio 7169  lecple 16809  occoc 16810  Atomscatm 37014  LHypclh 37735  LTrncltrn 37852  TEndoctendo 38503  DIsoCcdic 38923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-dic 38924
This theorem is referenced by:  dicdmN  38935
  Copyright terms: Public domain W3C validator