| Step | Hyp | Ref
| Expression |
| 1 | | breq1 5146 |
. . . . . . 7
⊢ (𝑝 = 𝑞 → (𝑝 ≤ 𝑊 ↔ 𝑞 ≤ 𝑊)) |
| 2 | 1 | notbid 318 |
. . . . . 6
⊢ (𝑝 = 𝑞 → (¬ 𝑝 ≤ 𝑊 ↔ ¬ 𝑞 ≤ 𝑊)) |
| 3 | 2 | elrab 3692 |
. . . . 5
⊢ (𝑞 ∈ {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} ↔ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) |
| 4 | | dicfn.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 5 | | dicfn.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | | dicfn.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | eqid 2737 |
. . . . . . 7
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) |
| 8 | | eqid 2737 |
. . . . . . 7
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
| 9 | | eqid 2737 |
. . . . . . 7
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
| 10 | | dicfn.i |
. . . . . . 7
⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| 11 | 4, 5, 6, 7, 8, 9, 10 | dicval 41178 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐼‘𝑞) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
| 12 | | fvex 6919 |
. . . . . 6
⊢ (𝐼‘𝑞) ∈ V |
| 13 | 11, 12 | eqeltrrdi 2850 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V) |
| 14 | 3, 13 | sylan2b 594 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑞 ∈ {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) → {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V) |
| 15 | 14 | ralrimiva 3146 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ∀𝑞 ∈ {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V) |
| 16 | | eqid 2737 |
. . . 4
⊢ (𝑞 ∈ {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) = (𝑞 ∈ {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
| 17 | 16 | fnmpt 6708 |
. . 3
⊢
(∀𝑞 ∈
{𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V → (𝑞 ∈ {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) |
| 18 | 15, 17 | syl 17 |
. 2
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑞 ∈ {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) |
| 19 | 4, 5, 6, 7, 8, 9, 10 | dicfval 41177 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑞 ∈ {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})) |
| 20 | 19 | fneq1d 6661 |
. 2
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} ↔ (𝑞 ∈ {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊})) |
| 21 | 18, 20 | mpbird 257 |
1
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) |