Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfnN Structured version   Visualization version   GIF version

Theorem dicfnN 41281
Description: Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicfn.l = (le‘𝐾)
dicfn.a 𝐴 = (Atoms‘𝐾)
dicfn.h 𝐻 = (LHyp‘𝐾)
dicfn.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicfnN ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐾,𝑝   𝑊,𝑝
Allowed substitution hints:   𝐻(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem dicfnN
Dummy variables 𝑞 𝑓 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5092 . . . . . . 7 (𝑝 = 𝑞 → (𝑝 𝑊𝑞 𝑊))
21notbid 318 . . . . . 6 (𝑝 = 𝑞 → (¬ 𝑝 𝑊 ↔ ¬ 𝑞 𝑊))
32elrab 3642 . . . . 5 (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↔ (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
4 dicfn.l . . . . . . 7 = (le‘𝐾)
5 dicfn.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 dicfn.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
7 eqid 2731 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
8 eqid 2731 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
9 eqid 2731 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
10 dicfn.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10dicval 41274 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐼𝑞) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
12 fvex 6835 . . . . . 6 (𝐼𝑞) ∈ V
1311, 12eqeltrrdi 2840 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
143, 13sylan2b 594 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊}) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
1514ralrimiva 3124 . . 3 ((𝐾𝑉𝑊𝐻) → ∀𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
16 eqid 2731 . . . 4 (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) = (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1716fnmpt 6621 . . 3 (∀𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V → (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
1815, 17syl 17 . 2 ((𝐾𝑉𝑊𝐻) → (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
194, 5, 6, 7, 8, 9, 10dicfval 41273 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
2019fneq1d 6574 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↔ (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊}))
2118, 20mpbird 257 1 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436   class class class wbr 5089  {copab 5151  cmpt 5170   Fn wfn 6476  cfv 6481  crio 7302  lecple 17168  occoc 17169  Atomscatm 39361  LHypclh 40082  LTrncltrn 40199  TEndoctendo 40850  DIsoCcdic 41270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-dic 41271
This theorem is referenced by:  dicdmN  41282
  Copyright terms: Public domain W3C validator