Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfnN Structured version   Visualization version   GIF version

Theorem dicfnN 40359
Description: Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicfn.l ≀ = (leβ€˜πΎ)
dicfn.a 𝐴 = (Atomsβ€˜πΎ)
dicfn.h 𝐻 = (LHypβ€˜πΎ)
dicfn.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dicfnN ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š})
Distinct variable groups:   ≀ ,𝑝   𝐴,𝑝   𝐾,𝑝   π‘Š,𝑝
Allowed substitution hints:   𝐻(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem dicfnN
Dummy variables π‘ž 𝑓 𝑠 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5152 . . . . . . 7 (𝑝 = π‘ž β†’ (𝑝 ≀ π‘Š ↔ π‘ž ≀ π‘Š))
21notbid 317 . . . . . 6 (𝑝 = π‘ž β†’ (Β¬ 𝑝 ≀ π‘Š ↔ Β¬ π‘ž ≀ π‘Š))
32elrab 3684 . . . . 5 (π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} ↔ (π‘ž ∈ 𝐴 ∧ Β¬ π‘ž ≀ π‘Š))
4 dicfn.l . . . . . . 7 ≀ = (leβ€˜πΎ)
5 dicfn.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
6 dicfn.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
7 eqid 2730 . . . . . . 7 ((ocβ€˜πΎ)β€˜π‘Š) = ((ocβ€˜πΎ)β€˜π‘Š)
8 eqid 2730 . . . . . . 7 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
9 eqid 2730 . . . . . . 7 ((TEndoβ€˜πΎ)β€˜π‘Š) = ((TEndoβ€˜πΎ)β€˜π‘Š)
10 dicfn.i . . . . . . 7 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
114, 5, 6, 7, 8, 9, 10dicval 40352 . . . . . 6 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (π‘ž ∈ 𝐴 ∧ Β¬ π‘ž ≀ π‘Š)) β†’ (πΌβ€˜π‘ž) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))})
12 fvex 6905 . . . . . 6 (πΌβ€˜π‘ž) ∈ V
1311, 12eqeltrrdi 2840 . . . . 5 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (π‘ž ∈ 𝐴 ∧ Β¬ π‘ž ≀ π‘Š)) β†’ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))} ∈ V)
143, 13sylan2b 592 . . . 4 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š}) β†’ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))} ∈ V)
1514ralrimiva 3144 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ βˆ€π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))} ∈ V)
16 eqid 2730 . . . 4 (π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))}) = (π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))})
1716fnmpt 6691 . . 3 (βˆ€π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))} ∈ V β†’ (π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))}) Fn {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š})
1815, 17syl 17 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))}) Fn {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š})
194, 5, 6, 7, 8, 9, 10dicfval 40351 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))}))
2019fneq1d 6643 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝐼 Fn {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} ↔ (π‘ž ∈ {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑒 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘’β€˜((ocβ€˜πΎ)β€˜π‘Š)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))}) Fn {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š}))
2118, 20mpbird 256 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {𝑝 ∈ 𝐴 ∣ Β¬ 𝑝 ≀ π‘Š})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430  Vcvv 3472   class class class wbr 5149  {copab 5211   ↦ cmpt 5232   Fn wfn 6539  β€˜cfv 6544  β„©crio 7368  lecple 17210  occoc 17211  Atomscatm 38438  LHypclh 39160  LTrncltrn 39277  TEndoctendo 39928  DIsoCcdic 40348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-dic 40349
This theorem is referenced by:  dicdmN  40360
  Copyright terms: Public domain W3C validator