Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfnN Structured version   Visualization version   GIF version

Theorem dicfnN 38479
Description: Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicfn.l = (le‘𝐾)
dicfn.a 𝐴 = (Atoms‘𝐾)
dicfn.h 𝐻 = (LHyp‘𝐾)
dicfn.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicfnN ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐾,𝑝   𝑊,𝑝
Allowed substitution hints:   𝐻(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem dicfnN
Dummy variables 𝑞 𝑓 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5033 . . . . . . 7 (𝑝 = 𝑞 → (𝑝 𝑊𝑞 𝑊))
21notbid 321 . . . . . 6 (𝑝 = 𝑞 → (¬ 𝑝 𝑊 ↔ ¬ 𝑞 𝑊))
32elrab 3628 . . . . 5 (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↔ (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
4 dicfn.l . . . . . . 7 = (le‘𝐾)
5 dicfn.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 dicfn.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
7 eqid 2798 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
8 eqid 2798 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
9 eqid 2798 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
10 dicfn.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10dicval 38472 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐼𝑞) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
12 fvex 6658 . . . . . 6 (𝐼𝑞) ∈ V
1311, 12eqeltrrdi 2899 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
143, 13sylan2b 596 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊}) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
1514ralrimiva 3149 . . 3 ((𝐾𝑉𝑊𝐻) → ∀𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
16 eqid 2798 . . . 4 (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) = (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1716fnmpt 6460 . . 3 (∀𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V → (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
1815, 17syl 17 . 2 ((𝐾𝑉𝑊𝐻) → (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
194, 5, 6, 7, 8, 9, 10dicfval 38471 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
2019fneq1d 6416 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↔ (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊}))
2118, 20mpbird 260 1 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441   class class class wbr 5030  {copab 5092  cmpt 5110   Fn wfn 6319  cfv 6324  crio 7092  lecple 16564  occoc 16565  Atomscatm 36559  LHypclh 37280  LTrncltrn 37397  TEndoctendo 38048  DIsoCcdic 38468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-dic 38469
This theorem is referenced by:  dicdmN  38480
  Copyright terms: Public domain W3C validator