Step | Hyp | Ref
| Expression |
1 | | breq1 5152 |
. . . . . . 7
β’ (π = π β (π β€ π β π β€ π)) |
2 | 1 | notbid 317 |
. . . . . 6
β’ (π = π β (Β¬ π β€ π β Β¬ π β€ π)) |
3 | 2 | elrab 3684 |
. . . . 5
β’ (π β {π β π΄ β£ Β¬ π β€ π} β (π β π΄ β§ Β¬ π β€ π)) |
4 | | dicfn.l |
. . . . . . 7
β’ β€ =
(leβπΎ) |
5 | | dicfn.a |
. . . . . . 7
β’ π΄ = (AtomsβπΎ) |
6 | | dicfn.h |
. . . . . . 7
β’ π» = (LHypβπΎ) |
7 | | eqid 2730 |
. . . . . . 7
β’
((ocβπΎ)βπ) = ((ocβπΎ)βπ) |
8 | | eqid 2730 |
. . . . . . 7
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
9 | | eqid 2730 |
. . . . . . 7
β’
((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) |
10 | | dicfn.i |
. . . . . . 7
β’ πΌ = ((DIsoCβπΎ)βπ) |
11 | 4, 5, 6, 7, 8, 9, 10 | dicval 40352 |
. . . . . 6
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))}) |
12 | | fvex 6905 |
. . . . . 6
β’ (πΌβπ) β V |
13 | 11, 12 | eqeltrrdi 2840 |
. . . . 5
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))} β V) |
14 | 3, 13 | sylan2b 592 |
. . . 4
β’ (((πΎ β π β§ π β π») β§ π β {π β π΄ β£ Β¬ π β€ π}) β {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))} β V) |
15 | 14 | ralrimiva 3144 |
. . 3
β’ ((πΎ β π β§ π β π») β βπ β {π β π΄ β£ Β¬ π β€ π} {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))} β V) |
16 | | eqid 2730 |
. . . 4
β’ (π β {π β π΄ β£ Β¬ π β€ π} β¦ {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))}) = (π β {π β π΄ β£ Β¬ π β€ π} β¦ {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))}) |
17 | 16 | fnmpt 6691 |
. . 3
β’
(βπ β
{π β π΄ β£ Β¬ π β€ π} {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))} β V β (π β {π β π΄ β£ Β¬ π β€ π} β¦ {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))}) Fn {π β π΄ β£ Β¬ π β€ π}) |
18 | 15, 17 | syl 17 |
. 2
β’ ((πΎ β π β§ π β π») β (π β {π β π΄ β£ Β¬ π β€ π} β¦ {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))}) Fn {π β π΄ β£ Β¬ π β€ π}) |
19 | 4, 5, 6, 7, 8, 9, 10 | dicfval 40351 |
. . 3
β’ ((πΎ β π β§ π β π») β πΌ = (π β {π β π΄ β£ Β¬ π β€ π} β¦ {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))})) |
20 | 19 | fneq1d 6643 |
. 2
β’ ((πΎ β π β§ π β π») β (πΌ Fn {π β π΄ β£ Β¬ π β€ π} β (π β {π β π΄ β£ Β¬ π β€ π} β¦ {β¨π, π β© β£ (π = (π β(β©π’ β ((LTrnβπΎ)βπ)(π’β((ocβπΎ)βπ)) = π)) β§ π β ((TEndoβπΎ)βπ))}) Fn {π β π΄ β£ Β¬ π β€ π})) |
21 | 18, 20 | mpbird 256 |
1
β’ ((πΎ β π β§ π β π») β πΌ Fn {π β π΄ β£ Β¬ π β€ π}) |