Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval2N | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dicval.l | ⊢ ≤ = (le‘𝐾) |
dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
dicval2.g | ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
Ref | Expression |
---|---|
dicelval2N | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ∧ (2nd ‘𝑌) ∈ 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicval.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | dicval.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicval.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
5 | dicval.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | dicval.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
7 | dicval.i | . . 3 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dicelvalN 38929 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸)))) |
9 | dicval2.g | . . . . . 6 ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) | |
10 | 9 | fveq2i 6720 | . . . . 5 ⊢ ((2nd ‘𝑌)‘𝐺) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) |
11 | 10 | eqeq2i 2750 | . . . 4 ⊢ ((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ↔ (1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) |
12 | 11 | anbi1i 627 | . . 3 ⊢ (((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ∧ (2nd ‘𝑌) ∈ 𝐸) ↔ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸)) |
13 | 12 | anbi2i 626 | . 2 ⊢ ((𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ∧ (2nd ‘𝑌) ∈ 𝐸)) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸))) |
14 | 8, 13 | bitr4di 292 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ∧ (2nd ‘𝑌) ∈ 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 class class class wbr 5053 × cxp 5549 ‘cfv 6380 ℩crio 7169 1st c1st 7759 2nd c2nd 7760 lecple 16809 occoc 16810 Atomscatm 37014 LHypclh 37735 LTrncltrn 37852 TEndoctendo 38503 DIsoCcdic 38923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-1st 7761 df-2nd 7762 df-dic 38924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |