Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval2N Structured version   Visualization version   GIF version

Theorem dicelval2N 41176
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicval2.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
Assertion
Ref Expression
dicelval2N (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st𝑌) = ((2nd𝑌)‘𝐺) ∧ (2nd𝑌) ∈ 𝐸))))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊   𝑄,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝐸(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)   𝑌(𝑔)

Proof of Theorem dicelval2N
StepHypRef Expression
1 dicval.l . . 3 = (le‘𝐾)
2 dicval.a . . 3 𝐴 = (Atoms‘𝐾)
3 dicval.h . . 3 𝐻 = (LHyp‘𝐾)
4 dicval.p . . 3 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . 3 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicelvalN 41172 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ 𝐸))))
9 dicval2.g . . . . . 6 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
109fveq2i 6861 . . . . 5 ((2nd𝑌)‘𝐺) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄))
1110eqeq2i 2742 . . . 4 ((1st𝑌) = ((2nd𝑌)‘𝐺) ↔ (1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1211anbi1i 624 . . 3 (((1st𝑌) = ((2nd𝑌)‘𝐺) ∧ (2nd𝑌) ∈ 𝐸) ↔ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ 𝐸))
1312anbi2i 623 . 2 ((𝑌 ∈ (V × V) ∧ ((1st𝑌) = ((2nd𝑌)‘𝐺) ∧ (2nd𝑌) ∈ 𝐸)) ↔ (𝑌 ∈ (V × V) ∧ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ 𝐸)))
148, 13bitr4di 289 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st𝑌) = ((2nd𝑌)‘𝐺) ∧ (2nd𝑌) ∈ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107   × cxp 5636  cfv 6511  crio 7343  1st c1st 7966  2nd c2nd 7967  lecple 17227  occoc 17228  Atomscatm 39256  LHypclh 39978  LTrncltrn 40095  TEndoctendo 40746  DIsoCcdic 41166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-1st 7968  df-2nd 7969  df-dic 41167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator