| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval2N | Structured version Visualization version GIF version | ||
| Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dicval.l | ⊢ ≤ = (le‘𝐾) |
| dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| dicval2.g | ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
| Ref | Expression |
|---|---|
| dicelval2N | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ∧ (2nd ‘𝑌) ∈ 𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dicval.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | dicval.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | dicval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dicval.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 5 | dicval.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | dicval.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 7 | dicval.i | . . 3 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dicelvalN 41164 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸)))) |
| 9 | dicval2.g | . . . . . 6 ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) | |
| 10 | 9 | fveq2i 6868 | . . . . 5 ⊢ ((2nd ‘𝑌)‘𝐺) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) |
| 11 | 10 | eqeq2i 2743 | . . . 4 ⊢ ((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ↔ (1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) |
| 12 | 11 | anbi1i 624 | . . 3 ⊢ (((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ∧ (2nd ‘𝑌) ∈ 𝐸) ↔ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸)) |
| 13 | 12 | anbi2i 623 | . 2 ⊢ ((𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ∧ (2nd ‘𝑌) ∈ 𝐸)) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸))) |
| 14 | 8, 13 | bitr4di 289 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ∧ (2nd ‘𝑌) ∈ 𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 class class class wbr 5115 × cxp 5644 ‘cfv 6519 ℩crio 7350 1st c1st 7975 2nd c2nd 7976 lecple 17233 occoc 17234 Atomscatm 39248 LHypclh 39970 LTrncltrn 40087 TEndoctendo 40738 DIsoCcdic 41158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-1st 7977 df-2nd 7978 df-dic 41159 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |