![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval2N | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dicval.l | β’ β€ = (leβπΎ) |
dicval.a | β’ π΄ = (AtomsβπΎ) |
dicval.h | β’ π» = (LHypβπΎ) |
dicval.p | β’ π = ((ocβπΎ)βπ) |
dicval.t | β’ π = ((LTrnβπΎ)βπ) |
dicval.e | β’ πΈ = ((TEndoβπΎ)βπ) |
dicval.i | β’ πΌ = ((DIsoCβπΎ)βπ) |
dicval2.g | β’ πΊ = (β©π β π (πβπ) = π) |
Ref | Expression |
---|---|
dicelval2N | β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β (π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)βπΊ) β§ (2nd βπ) β πΈ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicval.l | . . 3 β’ β€ = (leβπΎ) | |
2 | dicval.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
3 | dicval.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | dicval.p | . . 3 β’ π = ((ocβπΎ)βπ) | |
5 | dicval.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
6 | dicval.e | . . 3 β’ πΈ = ((TEndoβπΎ)βπ) | |
7 | dicval.i | . . 3 β’ πΌ = ((DIsoCβπΎ)βπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dicelvalN 40353 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β (π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β πΈ)))) |
9 | dicval2.g | . . . . . 6 β’ πΊ = (β©π β π (πβπ) = π) | |
10 | 9 | fveq2i 6894 | . . . . 5 β’ ((2nd βπ)βπΊ) = ((2nd βπ)β(β©π β π (πβπ) = π)) |
11 | 10 | eqeq2i 2744 | . . . 4 β’ ((1st βπ) = ((2nd βπ)βπΊ) β (1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π))) |
12 | 11 | anbi1i 623 | . . 3 β’ (((1st βπ) = ((2nd βπ)βπΊ) β§ (2nd βπ) β πΈ) β ((1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β πΈ)) |
13 | 12 | anbi2i 622 | . 2 β’ ((π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)βπΊ) β§ (2nd βπ) β πΈ)) β (π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β πΈ))) |
14 | 8, 13 | bitr4di 289 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β (π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)βπΊ) β§ (2nd βπ) β πΈ)))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 class class class wbr 5148 Γ cxp 5674 βcfv 6543 β©crio 7367 1st c1st 7977 2nd c2nd 7978 lecple 17209 occoc 17210 Atomscatm 38437 LHypclh 39159 LTrncltrn 39276 TEndoctendo 39927 DIsoCcdic 40347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-1st 7979 df-2nd 7980 df-dic 40348 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |