Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicopelval2 Structured version   Visualization version   GIF version

Theorem dicopelval2 41182
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicval2.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
dicelval2.f 𝐹 ∈ V
dicelval2.s 𝑆 ∈ V
Assertion
Ref Expression
dicopelval2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆𝐺) ∧ 𝑆𝐸)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊   𝑄,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝑆(𝑔)   𝐸(𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)

Proof of Theorem dicopelval2
StepHypRef Expression
1 dicval.l . . 3 = (le‘𝐾)
2 dicval.a . . 3 𝐴 = (Atoms‘𝐾)
3 dicval.h . . 3 𝐻 = (LHyp‘𝐾)
4 dicval.p . . 3 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . 3 𝐼 = ((DIsoC‘𝐾)‘𝑊)
8 dicelval2.f . . 3 𝐹 ∈ V
9 dicelval2.s . . 3 𝑆 ∈ V
101, 2, 3, 4, 5, 6, 7, 8, 9dicopelval 41178 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
11 dicval2.g . . . . 5 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
1211fveq2i 6864 . . . 4 (𝑆𝐺) = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄))
1312eqeq2i 2743 . . 3 (𝐹 = (𝑆𝐺) ↔ 𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1413anbi1i 624 . 2 ((𝐹 = (𝑆𝐺) ∧ 𝑆𝐸) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸))
1510, 14bitr4di 289 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆𝐺) ∧ 𝑆𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   class class class wbr 5110  cfv 6514  crio 7346  lecple 17234  occoc 17235  Atomscatm 39263  LHypclh 39985  LTrncltrn 40102  TEndoctendo 40753  DIsoCcdic 41173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-dic 41174
This theorem is referenced by:  diclspsn  41195  cdlemn11a  41208  dihopelvalcqat  41247  dihopelvalcpre  41249  dihord6apre  41257
  Copyright terms: Public domain W3C validator