![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicopelval2 | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 20-Feb-2014.) |
Ref | Expression |
---|---|
dicval.l | β’ β€ = (leβπΎ) |
dicval.a | β’ π΄ = (AtomsβπΎ) |
dicval.h | β’ π» = (LHypβπΎ) |
dicval.p | β’ π = ((ocβπΎ)βπ) |
dicval.t | β’ π = ((LTrnβπΎ)βπ) |
dicval.e | β’ πΈ = ((TEndoβπΎ)βπ) |
dicval.i | β’ πΌ = ((DIsoCβπΎ)βπ) |
dicval2.g | β’ πΊ = (β©π β π (πβπ) = π) |
dicelval2.f | β’ πΉ β V |
dicelval2.s | β’ π β V |
Ref | Expression |
---|---|
dicopelval2 | β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ = (πβπΊ) β§ π β πΈ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicval.l | . . 3 β’ β€ = (leβπΎ) | |
2 | dicval.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
3 | dicval.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | dicval.p | . . 3 β’ π = ((ocβπΎ)βπ) | |
5 | dicval.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
6 | dicval.e | . . 3 β’ πΈ = ((TEndoβπΎ)βπ) | |
7 | dicval.i | . . 3 β’ πΌ = ((DIsoCβπΎ)βπ) | |
8 | dicelval2.f | . . 3 β’ πΉ β V | |
9 | dicelval2.s | . . 3 β’ π β V | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | dicopelval 40043 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ = (πβ(β©π β π (πβπ) = π)) β§ π β πΈ))) |
11 | dicval2.g | . . . . 5 β’ πΊ = (β©π β π (πβπ) = π) | |
12 | 11 | fveq2i 6894 | . . . 4 β’ (πβπΊ) = (πβ(β©π β π (πβπ) = π)) |
13 | 12 | eqeq2i 2745 | . . 3 β’ (πΉ = (πβπΊ) β πΉ = (πβ(β©π β π (πβπ) = π))) |
14 | 13 | anbi1i 624 | . 2 β’ ((πΉ = (πβπΊ) β§ π β πΈ) β (πΉ = (πβ(β©π β π (πβπ) = π)) β§ π β πΈ)) |
15 | 10, 14 | bitr4di 288 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ = (πβπΊ) β§ π β πΈ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β¨cop 4634 class class class wbr 5148 βcfv 6543 β©crio 7363 lecple 17203 occoc 17204 Atomscatm 38128 LHypclh 38850 LTrncltrn 38967 TEndoctendo 39618 DIsoCcdic 40038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-dic 40039 |
This theorem is referenced by: diclspsn 40060 cdlemn11a 40073 dihopelvalcqat 40112 dihopelvalcpre 40114 dihord6apre 40122 |
Copyright terms: Public domain | W3C validator |