| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dicopelval2 | Structured version Visualization version GIF version | ||
| Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.) |
| Ref | Expression |
|---|---|
| dicval.l | ⊢ ≤ = (le‘𝐾) |
| dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| dicval2.g | ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
| dicelval2.f | ⊢ 𝐹 ∈ V |
| dicelval2.s | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| dicopelval2 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ (𝐹 = (𝑆‘𝐺) ∧ 𝑆 ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dicval.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | dicval.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | dicval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dicval.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 5 | dicval.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | dicval.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 7 | dicval.i | . . 3 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 8 | dicelval2.f | . . 3 ⊢ 𝐹 ∈ V | |
| 9 | dicelval2.s | . . 3 ⊢ 𝑆 ∈ V | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | dicopelval 41275 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸))) |
| 11 | dicval2.g | . . . . 5 ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) | |
| 12 | 11 | fveq2i 6825 | . . . 4 ⊢ (𝑆‘𝐺) = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) |
| 13 | 12 | eqeq2i 2744 | . . 3 ⊢ (𝐹 = (𝑆‘𝐺) ↔ 𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) |
| 14 | 13 | anbi1i 624 | . 2 ⊢ ((𝐹 = (𝑆‘𝐺) ∧ 𝑆 ∈ 𝐸) ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸)) |
| 15 | 10, 14 | bitr4di 289 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ (𝐹 = (𝑆‘𝐺) ∧ 𝑆 ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 ‘cfv 6481 ℩crio 7302 lecple 17168 occoc 17169 Atomscatm 39361 LHypclh 40082 LTrncltrn 40199 TEndoctendo 40850 DIsoCcdic 41270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-dic 41271 |
| This theorem is referenced by: diclspsn 41292 cdlemn11a 41305 dihopelvalcqat 41344 dihopelvalcpre 41346 dihord6apre 41354 |
| Copyright terms: Public domain | W3C validator |