Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicopelval2 Structured version   Visualization version   GIF version

Theorem dicopelval2 39122
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicval2.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
dicelval2.f 𝐹 ∈ V
dicelval2.s 𝑆 ∈ V
Assertion
Ref Expression
dicopelval2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆𝐺) ∧ 𝑆𝐸)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊   𝑄,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝑆(𝑔)   𝐸(𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)

Proof of Theorem dicopelval2
StepHypRef Expression
1 dicval.l . . 3 = (le‘𝐾)
2 dicval.a . . 3 𝐴 = (Atoms‘𝐾)
3 dicval.h . . 3 𝐻 = (LHyp‘𝐾)
4 dicval.p . . 3 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . 3 𝐼 = ((DIsoC‘𝐾)‘𝑊)
8 dicelval2.f . . 3 𝐹 ∈ V
9 dicelval2.s . . 3 𝑆 ∈ V
101, 2, 3, 4, 5, 6, 7, 8, 9dicopelval 39118 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
11 dicval2.g . . . . 5 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
1211fveq2i 6759 . . . 4 (𝑆𝐺) = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄))
1312eqeq2i 2751 . . 3 (𝐹 = (𝑆𝐺) ↔ 𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1413anbi1i 623 . 2 ((𝐹 = (𝑆𝐺) ∧ 𝑆𝐸) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸))
1510, 14bitr4di 288 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆𝐺) ∧ 𝑆𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   class class class wbr 5070  cfv 6418  crio 7211  lecple 16895  occoc 16896  Atomscatm 37204  LHypclh 37925  LTrncltrn 38042  TEndoctendo 38693  DIsoCcdic 39113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-dic 39114
This theorem is referenced by:  diclspsn  39135  cdlemn11a  39148  dihopelvalcqat  39187  dihopelvalcpre  39189  dihord6apre  39197
  Copyright terms: Public domain W3C validator