| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjenex | Structured version Visualization version GIF version | ||
| Description: Existence version of disjen 9075. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| Ref | Expression |
|---|---|
| disjenex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 2 | snex 5386 | . . 3 ⊢ {𝒫 ∪ ran 𝐴} ∈ V | |
| 3 | xpexg 7706 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ {𝒫 ∪ ran 𝐴} ∈ V) → (𝐵 × {𝒫 ∪ ran 𝐴}) ∈ V) | |
| 4 | 1, 2, 3 | sylancl 586 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝒫 ∪ ran 𝐴}) ∈ V) |
| 5 | disjen 9075 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | |
| 6 | ineq2 4173 | . . . 4 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (𝐴 ∩ 𝑥) = (𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴}))) | |
| 7 | 6 | eqeq1d 2731 | . . 3 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → ((𝐴 ∩ 𝑥) = ∅ ↔ (𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅)) |
| 8 | breq1 5105 | . . 3 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (𝑥 ≈ 𝐵 ↔ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | |
| 9 | 7, 8 | anbi12d 632 | . 2 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵) ↔ ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵))) |
| 10 | 4, 5, 9 | spcedv 3561 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ∅c0 4292 𝒫 cpw 4559 {csn 4585 ∪ cuni 4867 class class class wbr 5102 × cxp 5629 ran crn 5632 ≈ cen 8892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1st 7947 df-2nd 7948 df-en 8896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |