![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjenex | Structured version Visualization version GIF version |
Description: Existence version of disjen 9173. (Contributed by Mario Carneiro, 7-Feb-2015.) |
Ref | Expression |
---|---|
disjenex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
2 | snex 5442 | . . 3 ⊢ {𝒫 ∪ ran 𝐴} ∈ V | |
3 | xpexg 7769 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ {𝒫 ∪ ran 𝐴} ∈ V) → (𝐵 × {𝒫 ∪ ran 𝐴}) ∈ V) | |
4 | 1, 2, 3 | sylancl 586 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝒫 ∪ ran 𝐴}) ∈ V) |
5 | disjen 9173 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | |
6 | ineq2 4222 | . . . 4 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (𝐴 ∩ 𝑥) = (𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴}))) | |
7 | 6 | eqeq1d 2737 | . . 3 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → ((𝐴 ∩ 𝑥) = ∅ ↔ (𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅)) |
8 | breq1 5151 | . . 3 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (𝑥 ≈ 𝐵 ↔ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | |
9 | 7, 8 | anbi12d 632 | . 2 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵) ↔ ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵))) |
10 | 4, 5, 9 | spcedv 3598 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ∪ cuni 4912 class class class wbr 5148 × cxp 5687 ran crn 5690 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-1st 8013 df-2nd 8014 df-en 8985 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |