| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjenex | Structured version Visualization version GIF version | ||
| Description: Existence version of disjen 9153. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| Ref | Expression |
|---|---|
| disjenex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 2 | snex 5411 | . . 3 ⊢ {𝒫 ∪ ran 𝐴} ∈ V | |
| 3 | xpexg 7749 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ {𝒫 ∪ ran 𝐴} ∈ V) → (𝐵 × {𝒫 ∪ ran 𝐴}) ∈ V) | |
| 4 | 1, 2, 3 | sylancl 586 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝒫 ∪ ran 𝐴}) ∈ V) |
| 5 | disjen 9153 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | |
| 6 | ineq2 4194 | . . . 4 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (𝐴 ∩ 𝑥) = (𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴}))) | |
| 7 | 6 | eqeq1d 2738 | . . 3 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → ((𝐴 ∩ 𝑥) = ∅ ↔ (𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅)) |
| 8 | breq1 5127 | . . 3 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (𝑥 ≈ 𝐵 ↔ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | |
| 9 | 7, 8 | anbi12d 632 | . 2 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵) ↔ ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵))) |
| 10 | 4, 5, 9 | spcedv 3582 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ∅c0 4313 𝒫 cpw 4580 {csn 4606 ∪ cuni 4888 class class class wbr 5124 × cxp 5657 ran crn 5660 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1st 7993 df-2nd 7994 df-en 8965 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |