MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjenex Structured version   Visualization version   GIF version

Theorem disjenex 9143
Description: Existence version of disjen 9142. (Contributed by Mario Carneiro, 7-Feb-2015.)
Assertion
Ref Expression
disjenex ((𝐴𝑉𝐵𝑊) → ∃𝑥((𝐴𝑥) = ∅ ∧ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑊

Proof of Theorem disjenex
StepHypRef Expression
1 simpr 484 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
2 snex 5403 . . 3 {𝒫 ran 𝐴} ∈ V
3 xpexg 7738 . . 3 ((𝐵𝑊 ∧ {𝒫 ran 𝐴} ∈ V) → (𝐵 × {𝒫 ran 𝐴}) ∈ V)
41, 2, 3sylancl 586 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝒫 ran 𝐴}) ∈ V)
5 disjen 9142 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
6 ineq2 4187 . . . 4 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (𝐴𝑥) = (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})))
76eqeq1d 2736 . . 3 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → ((𝐴𝑥) = ∅ ↔ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅))
8 breq1 5119 . . 3 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (𝑥𝐵 ↔ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
97, 8anbi12d 632 . 2 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (((𝐴𝑥) = ∅ ∧ 𝑥𝐵) ↔ ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)))
104, 5, 9spcedv 3575 1 ((𝐴𝑉𝐵𝑊) → ∃𝑥((𝐴𝑥) = ∅ ∧ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  Vcvv 3457  cin 3923  c0 4306  𝒫 cpw 4573  {csn 4599   cuni 4880   class class class wbr 5116   × cxp 5649  ran crn 5652  cen 8950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-1st 7982  df-2nd 7983  df-en 8954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator