MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjenex Structured version   Visualization version   GIF version

Theorem disjenex 9201
Description: Existence version of disjen 9200. (Contributed by Mario Carneiro, 7-Feb-2015.)
Assertion
Ref Expression
disjenex ((𝐴𝑉𝐵𝑊) → ∃𝑥((𝐴𝑥) = ∅ ∧ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑊

Proof of Theorem disjenex
StepHypRef Expression
1 simpr 484 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
2 snex 5451 . . 3 {𝒫 ran 𝐴} ∈ V
3 xpexg 7785 . . 3 ((𝐵𝑊 ∧ {𝒫 ran 𝐴} ∈ V) → (𝐵 × {𝒫 ran 𝐴}) ∈ V)
41, 2, 3sylancl 585 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝒫 ran 𝐴}) ∈ V)
5 disjen 9200 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
6 ineq2 4235 . . . 4 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (𝐴𝑥) = (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})))
76eqeq1d 2742 . . 3 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → ((𝐴𝑥) = ∅ ↔ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅))
8 breq1 5169 . . 3 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (𝑥𝐵 ↔ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
97, 8anbi12d 631 . 2 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (((𝐴𝑥) = ∅ ∧ 𝑥𝐵) ↔ ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)))
104, 5, 9spcedv 3611 1 ((𝐴𝑉𝐵𝑊) → ∃𝑥((𝐴𝑥) = ∅ ∧ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cin 3975  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   class class class wbr 5166   × cxp 5698  ran crn 5701  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031  df-en 9004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator