MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjenex Structured version   Visualization version   GIF version

Theorem disjenex 9105
Description: Existence version of disjen 9104. (Contributed by Mario Carneiro, 7-Feb-2015.)
Assertion
Ref Expression
disjenex ((𝐴𝑉𝐵𝑊) → ∃𝑥((𝐴𝑥) = ∅ ∧ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑊

Proof of Theorem disjenex
StepHypRef Expression
1 simpr 484 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
2 snex 5394 . . 3 {𝒫 ran 𝐴} ∈ V
3 xpexg 7729 . . 3 ((𝐵𝑊 ∧ {𝒫 ran 𝐴} ∈ V) → (𝐵 × {𝒫 ran 𝐴}) ∈ V)
41, 2, 3sylancl 586 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝒫 ran 𝐴}) ∈ V)
5 disjen 9104 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
6 ineq2 4180 . . . 4 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (𝐴𝑥) = (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})))
76eqeq1d 2732 . . 3 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → ((𝐴𝑥) = ∅ ↔ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅))
8 breq1 5113 . . 3 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (𝑥𝐵 ↔ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
97, 8anbi12d 632 . 2 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (((𝐴𝑥) = ∅ ∧ 𝑥𝐵) ↔ ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)))
104, 5, 9spcedv 3567 1 ((𝐴𝑉𝐵𝑊) → ∃𝑥((𝐴𝑥) = ∅ ∧ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cin 3916  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   class class class wbr 5110   × cxp 5639  ran crn 5642  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1st 7971  df-2nd 7972  df-en 8922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator