MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjenex Structured version   Visualization version   GIF version

Theorem disjenex 9164
Description: Existence version of disjen 9163. (Contributed by Mario Carneiro, 7-Feb-2015.)
Assertion
Ref Expression
disjenex ((𝐴𝑉𝐵𝑊) → ∃𝑥((𝐴𝑥) = ∅ ∧ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑊

Proof of Theorem disjenex
StepHypRef Expression
1 simpr 483 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
2 snex 5435 . . 3 {𝒫 ran 𝐴} ∈ V
3 xpexg 7756 . . 3 ((𝐵𝑊 ∧ {𝒫 ran 𝐴} ∈ V) → (𝐵 × {𝒫 ran 𝐴}) ∈ V)
41, 2, 3sylancl 584 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝒫 ran 𝐴}) ∈ V)
5 disjen 9163 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
6 ineq2 4206 . . . 4 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (𝐴𝑥) = (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})))
76eqeq1d 2729 . . 3 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → ((𝐴𝑥) = ∅ ↔ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅))
8 breq1 5153 . . 3 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (𝑥𝐵 ↔ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
97, 8anbi12d 630 . 2 (𝑥 = (𝐵 × {𝒫 ran 𝐴}) → (((𝐴𝑥) = ∅ ∧ 𝑥𝐵) ↔ ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)))
104, 5, 9spcedv 3585 1 ((𝐴𝑉𝐵𝑊) → ∃𝑥((𝐴𝑥) = ∅ ∧ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wex 1773  wcel 2098  Vcvv 3471  cin 3946  c0 4324  𝒫 cpw 4604  {csn 4630   cuni 4910   class class class wbr 5150   × cxp 5678  ran crn 5681  cen 8965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-1st 7997  df-2nd 7998  df-en 8969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator