![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjenex | Structured version Visualization version GIF version |
Description: Existence version of disjen 9163. (Contributed by Mario Carneiro, 7-Feb-2015.) |
Ref | Expression |
---|---|
disjenex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
2 | snex 5435 | . . 3 ⊢ {𝒫 ∪ ran 𝐴} ∈ V | |
3 | xpexg 7756 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ {𝒫 ∪ ran 𝐴} ∈ V) → (𝐵 × {𝒫 ∪ ran 𝐴}) ∈ V) | |
4 | 1, 2, 3 | sylancl 584 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝒫 ∪ ran 𝐴}) ∈ V) |
5 | disjen 9163 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | |
6 | ineq2 4206 | . . . 4 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (𝐴 ∩ 𝑥) = (𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴}))) | |
7 | 6 | eqeq1d 2729 | . . 3 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → ((𝐴 ∩ 𝑥) = ∅ ↔ (𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅)) |
8 | breq1 5153 | . . 3 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (𝑥 ≈ 𝐵 ↔ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | |
9 | 7, 8 | anbi12d 630 | . 2 ⊢ (𝑥 = (𝐵 × {𝒫 ∪ ran 𝐴}) → (((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵) ↔ ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵))) |
10 | 4, 5, 9 | spcedv 3585 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3471 ∩ cin 3946 ∅c0 4324 𝒫 cpw 4604 {csn 4630 ∪ cuni 4910 class class class wbr 5150 × cxp 5678 ran crn 5681 ≈ cen 8965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-1st 7997 df-2nd 7998 df-en 8969 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |