![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatdmat | Structured version Visualization version GIF version |
Description: A scalar matrix is a diagonal matrix. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
Ref | Expression |
---|---|
scmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatid.e | ⊢ 𝐸 = (Base‘𝑅) |
scmatid.0 | ⊢ 0 = (0g‘𝑅) |
scmatid.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
scmatdmat.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
scmatdmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . . . . . 12 ⊢ ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) | |
2 | ifnefalse 4533 | . . . . . . . . . . . 12 ⊢ (𝑖 ≠ 𝑗 → if(𝑖 = 𝑗, 𝑐, 0 ) = 0 ) | |
3 | 1, 2 | sylan9eq 2784 | . . . . . . . . . . 11 ⊢ (((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ∧ 𝑖 ≠ 𝑗) → (𝑖𝑚𝑗) = 0 ) |
4 | 3 | ex 412 | . . . . . . . . . 10 ⊢ ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )) |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐸) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
6 | 5 | ralimdva 3159 | . . . . . . . 8 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐸) ∧ 𝑖 ∈ 𝑁) → (∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
7 | 6 | ralimdva 3159 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐸) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
8 | 7 | rexlimdva 3147 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (∃𝑐 ∈ 𝐸 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
9 | 8 | ss2rabdv 4066 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐸 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} ⊆ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
10 | 9 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐸 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} ⊆ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
11 | scmatid.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
12 | scmatid.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
13 | scmatid.s | . . . . . . 7 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
14 | scmatid.e | . . . . . . 7 ⊢ 𝐸 = (Base‘𝑅) | |
15 | scmatid.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
16 | 11, 12, 13, 14, 15 | scmatmats 22357 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐸 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
17 | scmatdmat.d | . . . . . . 7 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
18 | 11, 12, 15, 17 | dmatval 22338 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
19 | 16, 18 | sseq12d 4008 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ⊆ 𝐷 ↔ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐸 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} ⊆ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
20 | 19 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → (𝑆 ⊆ 𝐷 ↔ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐸 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} ⊆ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
21 | 10, 20 | mpbird 257 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → 𝑆 ⊆ 𝐷) |
22 | simpr 484 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝑆) | |
23 | 21, 22 | sseldd 3976 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐷) |
24 | 23 | ex 412 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 {crab 3424 ⊆ wss 3941 ifcif 4521 ‘cfv 6534 (class class class)co 7402 Fincfn 8936 Basecbs 17149 0gc0g 17390 Ringcrg 20134 Mat cmat 22251 DMat cdmat 22334 ScMat cscmat 22335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-ot 4630 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13486 df-fzo 13629 df-seq 13968 df-hash 14292 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-mhm 18709 df-submnd 18710 df-grp 18862 df-minusg 18863 df-sbg 18864 df-mulg 18992 df-subg 19046 df-ghm 19135 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-subrg 20467 df-lmod 20704 df-lss 20775 df-sra 21017 df-rgmod 21018 df-dsmm 21616 df-frlm 21631 df-mamu 22230 df-mat 22252 df-dmat 22336 df-scmat 22337 |
This theorem is referenced by: scmatcrng 22367 scmatsgrp1 22368 |
Copyright terms: Public domain | W3C validator |