| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmatbas | Structured version Visualization version GIF version | ||
| Description: The set of all 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅 is the base set of the algebra of 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅. (Contributed by AV, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| dmatbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| dmatbas.b | ⊢ 𝐵 = (Base‘𝐴) |
| dmatbas.0 | ⊢ 0 = (0g‘𝑅) |
| dmatbas.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
| Ref | Expression |
|---|---|
| dmatbas | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmatbas.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | dmatbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | dmatbas.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | dmatbas.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
| 5 | 1, 2, 3, 4 | dmatval 22428 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| 6 | elex 3480 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 7 | eqid 2735 | . . . 4 ⊢ (𝑁 DMatALT 𝑅) = (𝑁 DMatALT 𝑅) | |
| 8 | 1, 2, 3, 7 | dmatALTbas 48325 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 DMatALT 𝑅)) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| 9 | 6, 8 | sylan2 593 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 DMatALT 𝑅)) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
| 10 | 5, 9 | eqtr4d 2773 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 {crab 3415 Vcvv 3459 ‘cfv 6530 (class class class)co 7403 Fincfn 8957 Basecbs 17226 0gc0g 17451 Mat cmat 22343 DMat cdmat 22424 DMatALT cdmatalt 48320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-1cn 11185 ax-addcl 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-dmat 22426 df-dmatalt 48322 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |