![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmatbas | Structured version Visualization version GIF version |
Description: The set of all 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅 is the base set of the algebra of 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅. (Contributed by AV, 8-Dec-2019.) |
Ref | Expression |
---|---|
dmatbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatbas.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatbas.0 | ⊢ 0 = (0g‘𝑅) |
dmatbas.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
dmatbas | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatbas.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | dmatbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | dmatbas.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | dmatbas.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
5 | 1, 2, 3, 4 | dmatval 22519 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
6 | elex 3509 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
7 | eqid 2740 | . . . 4 ⊢ (𝑁 DMatALT 𝑅) = (𝑁 DMatALT 𝑅) | |
8 | 1, 2, 3, 7 | dmatALTbas 48130 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 DMatALT 𝑅)) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
9 | 6, 8 | sylan2 592 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 DMatALT 𝑅)) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
10 | 5, 9 | eqtr4d 2783 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 {crab 3443 Vcvv 3488 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 Basecbs 17258 0gc0g 17499 Mat cmat 22432 DMat cdmat 22515 DMatALT cdmatalt 48125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-dmat 22517 df-dmatalt 48127 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |