![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmatbas | Structured version Visualization version GIF version |
Description: The set of all 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅 is the base set of the algebra of 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅. (Contributed by AV, 8-Dec-2019.) |
Ref | Expression |
---|---|
dmatbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatbas.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatbas.0 | ⊢ 0 = (0g‘𝑅) |
dmatbas.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
dmatbas | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatbas.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | dmatbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | dmatbas.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | dmatbas.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
5 | 1, 2, 3, 4 | dmatval 22482 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
6 | elex 3482 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
7 | eqid 2726 | . . . 4 ⊢ (𝑁 DMatALT 𝑅) = (𝑁 DMatALT 𝑅) | |
8 | 1, 2, 3, 7 | dmatALTbas 47820 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 DMatALT 𝑅)) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
9 | 6, 8 | sylan2 591 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 DMatALT 𝑅)) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
10 | 5, 9 | eqtr4d 2769 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 {crab 3419 Vcvv 3462 ‘cfv 6546 (class class class)co 7416 Fincfn 8966 Basecbs 17208 0gc0g 17449 Mat cmat 22395 DMat cdmat 22478 DMatALT cdmatalt 47815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-1cn 11207 ax-addcl 11209 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-nn 12259 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-dmat 22480 df-dmatalt 47817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |