Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmatbas Structured version   Visualization version   GIF version

Theorem dmatbas 48327
Description: The set of all 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅 is the base set of the algebra of 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
dmatbas.a 𝐴 = (𝑁 Mat 𝑅)
dmatbas.b 𝐵 = (Base‘𝐴)
dmatbas.0 0 = (0g𝑅)
dmatbas.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatbas ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅)))

Proof of Theorem dmatbas
Dummy variables 𝑚 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 dmatbas.b . . 3 𝐵 = (Base‘𝐴)
3 dmatbas.0 . . 3 0 = (0g𝑅)
4 dmatbas.d . . 3 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatval 22428 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
6 elex 3480 . . 3 (𝑅𝑉𝑅 ∈ V)
7 eqid 2735 . . . 4 (𝑁 DMatALT 𝑅) = (𝑁 DMatALT 𝑅)
81, 2, 3, 7dmatALTbas 48325 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 DMatALT 𝑅)) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
96, 8sylan2 593 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (Base‘(𝑁 DMatALT 𝑅)) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
105, 9eqtr4d 2773 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  cfv 6530  (class class class)co 7403  Fincfn 8957  Basecbs 17226  0gc0g 17451   Mat cmat 22343   DMat cdmat 22424   DMatALT cdmatalt 48320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-1cn 11185  ax-addcl 11187
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-nn 12239  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-dmat 22426  df-dmatalt 48322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator