Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochfval Structured version   Visualization version   GIF version

Theorem dochfval 41332
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐵 = (Base‘𝐾)
dochval.g 𝐺 = (glb‘𝐾)
dochval.o = (oc‘𝐾)
dochval.h 𝐻 = (LHyp‘𝐾)
dochval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dochval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochval.v 𝑉 = (Base‘𝑈)
dochval.n 𝑁 = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochfval ((𝐾𝑋𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
Distinct variable groups:   𝑦,𝐵   𝑥,𝑦,𝐾   𝑥,𝑉   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑁(𝑥,𝑦)   (𝑥,𝑦)   𝑉(𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem dochfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dochval.n . . 3 𝑁 = ((ocH‘𝐾)‘𝑊)
2 dochval.b . . . . 5 𝐵 = (Base‘𝐾)
3 dochval.g . . . . 5 𝐺 = (glb‘𝐾)
4 dochval.o . . . . 5 = (oc‘𝐾)
5 dochval.h . . . . 5 𝐻 = (LHyp‘𝐾)
62, 3, 4, 5dochffval 41331 . . . 4 (𝐾𝑋 → (ocH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
76fveq1d 6828 . . 3 (𝐾𝑋 → ((ocH‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))‘𝑊))
81, 7eqtrid 2776 . 2 (𝐾𝑋𝑁 = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))‘𝑊))
9 fveq2 6826 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
10 dochval.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
119, 10eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
1211fveq2d 6830 . . . . . 6 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = (Base‘𝑈))
13 dochval.v . . . . . 6 𝑉 = (Base‘𝑈)
1412, 13eqtr4di 2782 . . . . 5 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = 𝑉)
1514pweqd 4570 . . . 4 (𝑤 = 𝑊 → 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) = 𝒫 𝑉)
16 fveq2 6826 . . . . . 6 (𝑤 = 𝑊 → ((DIsoH‘𝐾)‘𝑤) = ((DIsoH‘𝐾)‘𝑊))
17 dochval.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
1816, 17eqtr4di 2782 . . . . 5 (𝑤 = 𝑊 → ((DIsoH‘𝐾)‘𝑤) = 𝐼)
1918fveq1d 6828 . . . . . . . . 9 (𝑤 = 𝑊 → (((DIsoH‘𝐾)‘𝑤)‘𝑦) = (𝐼𝑦))
2019sseq2d 3970 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦) ↔ 𝑥 ⊆ (𝐼𝑦)))
2120rabbidv 3404 . . . . . . 7 (𝑤 = 𝑊 → {𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)} = {𝑦𝐵𝑥 ⊆ (𝐼𝑦)})
2221fveq2d 6830 . . . . . 6 (𝑤 = 𝑊 → (𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}) = (𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))
2322fveq2d 6830 . . . . 5 (𝑤 = 𝑊 → ( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})) = ( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))
2418, 23fveq12d 6833 . . . 4 (𝑤 = 𝑊 → (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))
2515, 24mpteq12dv 5182 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
26 eqid 2729 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))
2713fvexi 6840 . . . . 5 𝑉 ∈ V
2827pwex 5322 . . . 4 𝒫 𝑉 ∈ V
2928mptex 7163 . . 3 (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))) ∈ V
3025, 26, 29fvmpt 6934 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))‘𝑊) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
318, 30sylan9eq 2784 1 ((𝐾𝑋𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  wss 3905  𝒫 cpw 4553  cmpt 5176  cfv 6486  Basecbs 17138  occoc 17187  glbcglb 18234  LHypclh 39966  DVecHcdvh 41060  DIsoHcdih 41210  ocHcoch 41329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-doch 41330
This theorem is referenced by:  dochval  41333  dochfN  41338
  Copyright terms: Public domain W3C validator