Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochfval Structured version   Visualization version   GIF version

Theorem dochfval 39842
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐡 = (Baseβ€˜πΎ)
dochval.g 𝐺 = (glbβ€˜πΎ)
dochval.o βŠ₯ = (ocβ€˜πΎ)
dochval.h 𝐻 = (LHypβ€˜πΎ)
dochval.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dochval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dochval.v 𝑉 = (Baseβ€˜π‘ˆ)
dochval.n 𝑁 = ((ocHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dochfval ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ 𝑁 = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))))
Distinct variable groups:   𝑦,𝐡   π‘₯,𝑦,𝐾   π‘₯,𝑉   π‘₯,π‘Š,𝑦
Allowed substitution hints:   𝐡(π‘₯)   π‘ˆ(π‘₯,𝑦)   𝐺(π‘₯,𝑦)   𝐻(π‘₯,𝑦)   𝐼(π‘₯,𝑦)   𝑁(π‘₯,𝑦)   βŠ₯ (π‘₯,𝑦)   𝑉(𝑦)   𝑋(π‘₯,𝑦)

Proof of Theorem dochfval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 dochval.n . . 3 𝑁 = ((ocHβ€˜πΎ)β€˜π‘Š)
2 dochval.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 dochval.g . . . . 5 𝐺 = (glbβ€˜πΎ)
4 dochval.o . . . . 5 βŠ₯ = (ocβ€˜πΎ)
5 dochval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
62, 3, 4, 5dochffval 39841 . . . 4 (𝐾 ∈ 𝑋 β†’ (ocHβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}))))))
76fveq1d 6849 . . 3 (𝐾 ∈ 𝑋 β†’ ((ocHβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)})))))β€˜π‘Š))
81, 7eqtrid 2789 . 2 (𝐾 ∈ 𝑋 β†’ 𝑁 = ((𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)})))))β€˜π‘Š))
9 fveq2 6847 . . . . . . . 8 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = ((DVecHβ€˜πΎ)β€˜π‘Š))
10 dochval.u . . . . . . . 8 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
119, 10eqtr4di 2795 . . . . . . 7 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = π‘ˆ)
1211fveq2d 6851 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (Baseβ€˜π‘ˆ))
13 dochval.v . . . . . 6 𝑉 = (Baseβ€˜π‘ˆ)
1412, 13eqtr4di 2795 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝑉)
1514pweqd 4582 . . . 4 (𝑀 = π‘Š β†’ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝒫 𝑉)
16 fveq2 6847 . . . . . 6 (𝑀 = π‘Š β†’ ((DIsoHβ€˜πΎ)β€˜π‘€) = ((DIsoHβ€˜πΎ)β€˜π‘Š))
17 dochval.i . . . . . 6 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
1816, 17eqtr4di 2795 . . . . 5 (𝑀 = π‘Š β†’ ((DIsoHβ€˜πΎ)β€˜π‘€) = 𝐼)
1918fveq1d 6849 . . . . . . . . 9 (𝑀 = π‘Š β†’ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦) = (πΌβ€˜π‘¦))
2019sseq2d 3981 . . . . . . . 8 (𝑀 = π‘Š β†’ (π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦) ↔ π‘₯ βŠ† (πΌβ€˜π‘¦)))
2120rabbidv 3418 . . . . . . 7 (𝑀 = π‘Š β†’ {𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)} = {𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})
2221fveq2d 6851 . . . . . 6 (𝑀 = π‘Š β†’ (πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}) = (πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))
2322fveq2d 6851 . . . . 5 (𝑀 = π‘Š β†’ ( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)})) = ( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))
2418, 23fveq12d 6854 . . . 4 (𝑀 = π‘Š β†’ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}))) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))))
2515, 24mpteq12dv 5201 . . 3 (𝑀 = π‘Š β†’ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)})))) = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))))
26 eqid 2737 . . 3 (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)}))))) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)})))))
2713fvexi 6861 . . . . 5 𝑉 ∈ V
2827pwex 5340 . . . 4 𝒫 𝑉 ∈ V
2928mptex 7178 . . 3 (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))) ∈ V
3025, 26, 29fvmpt 6953 . 2 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (((DIsoHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)})))))β€˜π‘Š) = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))))
318, 30sylan9eq 2797 1 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ 𝑁 = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {crab 3410   βŠ† wss 3915  π’« cpw 4565   ↦ cmpt 5193  β€˜cfv 6501  Basecbs 17090  occoc 17148  glbcglb 18206  LHypclh 38476  DVecHcdvh 39570  DIsoHcdih 39720  ocHcoch 39839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-doch 39840
This theorem is referenced by:  dochval  39843  dochfN  39848
  Copyright terms: Public domain W3C validator