Step | Hyp | Ref
| Expression |
1 | | dochval.n |
. . 3
⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) |
2 | | dochval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
3 | | dochval.g |
. . . . 5
⊢ 𝐺 = (glb‘𝐾) |
4 | | dochval.o |
. . . . 5
⊢ ⊥ =
(oc‘𝐾) |
5 | | dochval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
6 | 2, 3, 4, 5 | dochffval 39290 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → (ocH‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))) |
7 | 6 | fveq1d 6758 |
. . 3
⊢ (𝐾 ∈ 𝑋 → ((ocH‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))‘𝑊)) |
8 | 1, 7 | syl5eq 2791 |
. 2
⊢ (𝐾 ∈ 𝑋 → 𝑁 = ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))‘𝑊)) |
9 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊)) |
10 | | dochval.u |
. . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
11 | 9, 10 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈) |
12 | 11 | fveq2d 6760 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = (Base‘𝑈)) |
13 | | dochval.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑈) |
14 | 12, 13 | eqtr4di 2797 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = 𝑉) |
15 | 14 | pweqd 4549 |
. . . 4
⊢ (𝑤 = 𝑊 → 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) = 𝒫 𝑉) |
16 | | fveq2 6756 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((DIsoH‘𝐾)‘𝑤) = ((DIsoH‘𝐾)‘𝑊)) |
17 | | dochval.i |
. . . . . 6
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
18 | 16, 17 | eqtr4di 2797 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((DIsoH‘𝐾)‘𝑤) = 𝐼) |
19 | 18 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (((DIsoH‘𝐾)‘𝑤)‘𝑦) = (𝐼‘𝑦)) |
20 | 19 | sseq2d 3949 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦) ↔ 𝑥 ⊆ (𝐼‘𝑦))) |
21 | 20 | rabbidv 3404 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → {𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)} = {𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}) |
22 | 21 | fveq2d 6760 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}) = (𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)})) |
23 | 22 | fveq2d 6760 |
. . . . 5
⊢ (𝑤 = 𝑊 → ( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})) = ( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))) |
24 | 18, 23 | fveq12d 6763 |
. . . 4
⊢ (𝑤 = 𝑊 → (((DIsoH‘𝐾)‘𝑤)‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)})))) |
25 | 15, 24 | mpteq12dv 5161 |
. . 3
⊢ (𝑤 = 𝑊 → (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))) |
26 | | eqid 2738 |
. . 3
⊢ (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))) |
27 | 13 | fvexi 6770 |
. . . . 5
⊢ 𝑉 ∈ V |
28 | 27 | pwex 5298 |
. . . 4
⊢ 𝒫
𝑉 ∈ V |
29 | 28 | mptex 7081 |
. . 3
⊢ (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)})))) ∈ V |
30 | 25, 26, 29 | fvmpt 6857 |
. 2
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))‘𝑊) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))) |
31 | 8, 30 | sylan9eq 2799 |
1
⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))) |