| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapfv2d | Structured version Visualization version GIF version | ||
| Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹. (Contributed by RP, 19-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| dssmapfv2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| dssmapfv2d.g | ⊢ 𝐺 = (𝐷‘𝐹) |
| Ref | Expression |
|---|---|
| dssmapfv2d | ⊢ (𝜑 → 𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapfv2d.g | . 2 ⊢ 𝐺 = (𝐷‘𝐹) | |
| 2 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 3 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 4 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 5 | 2, 3, 4 | dssmapfvd 44115 | . . 3 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| 6 | fveq1 6827 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝐵 ∖ 𝑠)) = (𝐹‘(𝐵 ∖ 𝑠))) | |
| 7 | 6 | difeq2d 4075 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠)))) |
| 8 | 7 | mpteq2dv 5187 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
| 10 | dssmapfv2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 11 | pwexg 5318 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V) | |
| 12 | mptexg 7161 | . . . 4 ⊢ (𝒫 𝐵 ∈ V → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠)))) ∈ V) | |
| 13 | 4, 11, 12 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠)))) ∈ V) |
| 14 | 5, 9, 10, 13 | fvmptd 6942 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
| 15 | 1, 14 | eqtrid 2778 | 1 ⊢ (𝜑 → 𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 𝒫 cpw 4549 ↦ cmpt 5174 ‘cfv 6487 (class class class)co 7352 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 |
| This theorem is referenced by: dssmapfv3d 44117 |
| Copyright terms: Public domain | W3C validator |