Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfv2d Structured version   Visualization version   GIF version

Theorem dssmapfv2d 43991
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
dssmapfv2d.f (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))
dssmapfv2d.g 𝐺 = (𝐷𝐹)
Assertion
Ref Expression
dssmapfv2d (𝜑𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))))
Distinct variable groups:   𝐵,𝑏,𝑓,𝑠   𝑓,𝐹,𝑠   𝜑,𝑏,𝑓
Allowed substitution hints:   𝜑(𝑠)   𝐷(𝑓,𝑠,𝑏)   𝐹(𝑏)   𝐺(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapfv2d
StepHypRef Expression
1 dssmapfv2d.g . 2 𝐺 = (𝐷𝐹)
2 dssmapfvd.o . . . 4 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
3 dssmapfvd.d . . . 4 𝐷 = (𝑂𝐵)
4 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
52, 3, 4dssmapfvd 43990 . . 3 (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
6 fveq1 6825 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘(𝐵𝑠)) = (𝐹‘(𝐵𝑠)))
76difeq2d 4079 . . . . 5 (𝑓 = 𝐹 → (𝐵 ∖ (𝑓‘(𝐵𝑠))) = (𝐵 ∖ (𝐹‘(𝐵𝑠))))
87mpteq2dv 5189 . . . 4 (𝑓 = 𝐹 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))))
98adantl 481 . . 3 ((𝜑𝑓 = 𝐹) → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))))
10 dssmapfv2d.f . . 3 (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))
11 pwexg 5320 . . . 4 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
12 mptexg 7161 . . . 4 (𝒫 𝐵 ∈ V → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))) ∈ V)
134, 11, 123syl 18 . . 3 (𝜑 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))) ∈ V)
145, 9, 10, 13fvmptd 6941 . 2 (𝜑 → (𝐷𝐹) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))))
151, 14eqtrid 2776 1 (𝜑𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  𝒫 cpw 4553  cmpt 5176  cfv 6486  (class class class)co 7353  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356
This theorem is referenced by:  dssmapfv3d  43992
  Copyright terms: Public domain W3C validator