![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapfv2d | Structured version Visualization version GIF version |
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹. (Contributed by RP, 19-Apr-2021.) |
Ref | Expression |
---|---|
dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
dssmapfv2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
dssmapfv2d.g | ⊢ 𝐺 = (𝐷‘𝐹) |
Ref | Expression |
---|---|
dssmapfv2d | ⊢ (𝜑 → 𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapfv2d.g | . 2 ⊢ 𝐺 = (𝐷‘𝐹) | |
2 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
3 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
4 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
5 | 2, 3, 4 | dssmapfvd 43919 | . . 3 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
6 | fveq1 6918 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝐵 ∖ 𝑠)) = (𝐹‘(𝐵 ∖ 𝑠))) | |
7 | 6 | difeq2d 4143 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠)))) |
8 | 7 | mpteq2dv 5271 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
10 | dssmapfv2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
11 | pwexg 5399 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V) | |
12 | mptexg 7256 | . . . 4 ⊢ (𝒫 𝐵 ∈ V → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠)))) ∈ V) | |
13 | 4, 11, 12 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠)))) ∈ V) |
14 | 5, 9, 10, 13 | fvmptd 7034 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
15 | 1, 14 | eqtrid 2786 | 1 ⊢ (𝜑 → 𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 Vcvv 3482 ∖ cdif 3967 𝒫 cpw 4622 ↦ cmpt 5252 ‘cfv 6572 (class class class)co 7445 ↑m cmap 8880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-ov 7448 |
This theorem is referenced by: dssmapfv3d 43921 |
Copyright terms: Public domain | W3C validator |