![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapfv3d | Structured version Visualization version GIF version |
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹 and subset 𝑆. (Contributed by RP, 19-Apr-2021.) |
Ref | Expression |
---|---|
dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
dssmapfv2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
dssmapfv2d.g | ⊢ 𝐺 = (𝐷‘𝐹) |
dssmapfv3d.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
dssmapfv3d.t | ⊢ 𝑇 = (𝐺‘𝑆) |
Ref | Expression |
---|---|
dssmapfv3d | ⊢ (𝜑 → 𝑇 = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapfv3d.t | . 2 ⊢ 𝑇 = (𝐺‘𝑆) | |
2 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
3 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
4 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
5 | dssmapfv2d.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
6 | dssmapfv2d.g | . . . 4 ⊢ 𝐺 = (𝐷‘𝐹) | |
7 | 2, 3, 4, 5, 6 | dssmapfv2d 43980 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
8 | difeq2 4143 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝐵 ∖ 𝑠) = (𝐵 ∖ 𝑆)) | |
9 | 8 | fveq2d 6924 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝐹‘(𝐵 ∖ 𝑠)) = (𝐹‘(𝐵 ∖ 𝑆))) |
10 | 9 | difeq2d 4149 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = 𝑆) → (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
12 | dssmapfv3d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
13 | 4 | difexd 5349 | . . 3 ⊢ (𝜑 → (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆))) ∈ V) |
14 | 7, 11, 12, 13 | fvmptd 7036 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
15 | 1, 14 | eqtrid 2792 | 1 ⊢ (𝜑 → 𝑇 = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 𝒫 cpw 4622 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 |
This theorem is referenced by: ntrclselnel1 44019 ntrclsfv 44021 ntrclscls00 44028 ntrclsiso 44029 ntrclsk2 44030 ntrclskb 44031 ntrclsk3 44032 ntrclsk13 44033 dssmapntrcls 44090 |
Copyright terms: Public domain | W3C validator |