Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfv3d Structured version   Visualization version   GIF version

Theorem dssmapfv3d 40372
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹 and subset 𝑆. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
dssmapfv2d.f (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))
dssmapfv2d.g 𝐺 = (𝐷𝐹)
dssmapfv3d.s (𝜑𝑆 ∈ 𝒫 𝐵)
dssmapfv3d.t 𝑇 = (𝐺𝑆)
Assertion
Ref Expression
dssmapfv3d (𝜑𝑇 = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑏,𝑓,𝑠   𝑓,𝐹,𝑠   𝑆,𝑠   𝜑,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝑆(𝑓,𝑏)   𝑇(𝑓,𝑠,𝑏)   𝐹(𝑏)   𝐺(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapfv3d
StepHypRef Expression
1 dssmapfv3d.t . 2 𝑇 = (𝐺𝑆)
2 dssmapfvd.o . . . 4 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
3 dssmapfvd.d . . . 4 𝐷 = (𝑂𝐵)
4 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
5 dssmapfv2d.f . . . 4 (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))
6 dssmapfv2d.g . . . 4 𝐺 = (𝐷𝐹)
72, 3, 4, 5, 6dssmapfv2d 40371 . . 3 (𝜑𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))))
8 difeq2 4095 . . . . . 6 (𝑠 = 𝑆 → (𝐵𝑠) = (𝐵𝑆))
98fveq2d 6676 . . . . 5 (𝑠 = 𝑆 → (𝐹‘(𝐵𝑠)) = (𝐹‘(𝐵𝑆)))
109difeq2d 4101 . . . 4 (𝑠 = 𝑆 → (𝐵 ∖ (𝐹‘(𝐵𝑠))) = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
1110adantl 484 . . 3 ((𝜑𝑠 = 𝑆) → (𝐵 ∖ (𝐹‘(𝐵𝑠))) = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
12 dssmapfv3d.s . . 3 (𝜑𝑆 ∈ 𝒫 𝐵)
13 difexg 5233 . . . 4 (𝐵𝑉 → (𝐵 ∖ (𝐹‘(𝐵𝑆))) ∈ V)
144, 13syl 17 . . 3 (𝜑 → (𝐵 ∖ (𝐹‘(𝐵𝑆))) ∈ V)
157, 11, 12, 14fvmptd 6777 . 2 (𝜑 → (𝐺𝑆) = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
161, 15syl5eq 2870 1 (𝜑𝑇 = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  𝒫 cpw 4541  cmpt 5148  cfv 6357  (class class class)co 7158  m cmap 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161
This theorem is referenced by:  ntrclselnel1  40414  ntrclsfv  40416  ntrclscls00  40423  ntrclsiso  40424  ntrclsk2  40425  ntrclskb  40426  ntrclsk3  40427  ntrclsk13  40428  dssmapntrcls  40485
  Copyright terms: Public domain W3C validator