| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapfv3d | Structured version Visualization version GIF version | ||
| Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹 and subset 𝑆. (Contributed by RP, 19-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| dssmapfv2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| dssmapfv2d.g | ⊢ 𝐺 = (𝐷‘𝐹) |
| dssmapfv3d.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| dssmapfv3d.t | ⊢ 𝑇 = (𝐺‘𝑆) |
| Ref | Expression |
|---|---|
| dssmapfv3d | ⊢ (𝜑 → 𝑇 = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapfv3d.t | . 2 ⊢ 𝑇 = (𝐺‘𝑆) | |
| 2 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 3 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 4 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 5 | dssmapfv2d.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 6 | dssmapfv2d.g | . . . 4 ⊢ 𝐺 = (𝐷‘𝐹) | |
| 7 | 2, 3, 4, 5, 6 | dssmapfv2d 44030 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
| 8 | difeq2 4068 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝐵 ∖ 𝑠) = (𝐵 ∖ 𝑆)) | |
| 9 | 8 | fveq2d 6821 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝐹‘(𝐵 ∖ 𝑠)) = (𝐹‘(𝐵 ∖ 𝑆))) |
| 10 | 9 | difeq2d 4074 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = 𝑆) → (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| 12 | dssmapfv3d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 13 | 4 | difexd 5267 | . . 3 ⊢ (𝜑 → (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆))) ∈ V) |
| 14 | 7, 11, 12, 13 | fvmptd 6931 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| 15 | 1, 14 | eqtrid 2777 | 1 ⊢ (𝜑 → 𝑇 = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∖ cdif 3897 𝒫 cpw 4548 ↦ cmpt 5170 ‘cfv 6477 (class class class)co 7341 ↑m cmap 8745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 |
| This theorem is referenced by: ntrclselnel1 44069 ntrclsfv 44071 ntrclscls00 44078 ntrclsiso 44079 ntrclsk2 44080 ntrclskb 44081 ntrclsk3 44082 ntrclsk13 44083 dssmapntrcls 44140 |
| Copyright terms: Public domain | W3C validator |