| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapfv3d | Structured version Visualization version GIF version | ||
| Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹 and subset 𝑆. (Contributed by RP, 19-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| dssmapfv2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| dssmapfv2d.g | ⊢ 𝐺 = (𝐷‘𝐹) |
| dssmapfv3d.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| dssmapfv3d.t | ⊢ 𝑇 = (𝐺‘𝑆) |
| Ref | Expression |
|---|---|
| dssmapfv3d | ⊢ (𝜑 → 𝑇 = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapfv3d.t | . 2 ⊢ 𝑇 = (𝐺‘𝑆) | |
| 2 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 3 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 4 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 5 | dssmapfv2d.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 6 | dssmapfv2d.g | . . . 4 ⊢ 𝐺 = (𝐷‘𝐹) | |
| 7 | 2, 3, 4, 5, 6 | dssmapfv2d 44007 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) |
| 8 | difeq2 4083 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝐵 ∖ 𝑠) = (𝐵 ∖ 𝑆)) | |
| 9 | 8 | fveq2d 6862 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝐹‘(𝐵 ∖ 𝑠)) = (𝐹‘(𝐵 ∖ 𝑆))) |
| 10 | 9 | difeq2d 4089 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = 𝑆) → (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| 12 | dssmapfv3d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 13 | 4 | difexd 5286 | . . 3 ⊢ (𝜑 → (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆))) ∈ V) |
| 14 | 7, 11, 12, 13 | fvmptd 6975 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| 15 | 1, 14 | eqtrid 2776 | 1 ⊢ (𝜑 → 𝑇 = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 𝒫 cpw 4563 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: ntrclselnel1 44046 ntrclsfv 44048 ntrclscls00 44055 ntrclsiso 44056 ntrclsk2 44057 ntrclskb 44058 ntrclsk3 44059 ntrclsk13 44060 dssmapntrcls 44117 |
| Copyright terms: Public domain | W3C validator |