Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfv3d Structured version   Visualization version   GIF version

Theorem dssmapfv3d 40720
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹 and subset 𝑆. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
dssmapfv2d.f (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))
dssmapfv2d.g 𝐺 = (𝐷𝐹)
dssmapfv3d.s (𝜑𝑆 ∈ 𝒫 𝐵)
dssmapfv3d.t 𝑇 = (𝐺𝑆)
Assertion
Ref Expression
dssmapfv3d (𝜑𝑇 = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑏,𝑓,𝑠   𝑓,𝐹,𝑠   𝑆,𝑠   𝜑,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝑆(𝑓,𝑏)   𝑇(𝑓,𝑠,𝑏)   𝐹(𝑏)   𝐺(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapfv3d
StepHypRef Expression
1 dssmapfv3d.t . 2 𝑇 = (𝐺𝑆)
2 dssmapfvd.o . . . 4 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
3 dssmapfvd.d . . . 4 𝐷 = (𝑂𝐵)
4 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
5 dssmapfv2d.f . . . 4 (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))
6 dssmapfv2d.g . . . 4 𝐺 = (𝐷𝐹)
72, 3, 4, 5, 6dssmapfv2d 40719 . . 3 (𝜑𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))))
8 difeq2 4044 . . . . . 6 (𝑠 = 𝑆 → (𝐵𝑠) = (𝐵𝑆))
98fveq2d 6649 . . . . 5 (𝑠 = 𝑆 → (𝐹‘(𝐵𝑠)) = (𝐹‘(𝐵𝑆)))
109difeq2d 4050 . . . 4 (𝑠 = 𝑆 → (𝐵 ∖ (𝐹‘(𝐵𝑠))) = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
1110adantl 485 . . 3 ((𝜑𝑠 = 𝑆) → (𝐵 ∖ (𝐹‘(𝐵𝑠))) = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
12 dssmapfv3d.s . . 3 (𝜑𝑆 ∈ 𝒫 𝐵)
13 difexg 5195 . . . 4 (𝐵𝑉 → (𝐵 ∖ (𝐹‘(𝐵𝑆))) ∈ V)
144, 13syl 17 . . 3 (𝜑 → (𝐵 ∖ (𝐹‘(𝐵𝑆))) ∈ V)
157, 11, 12, 14fvmptd 6752 . 2 (𝜑 → (𝐺𝑆) = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
161, 15syl5eq 2845 1 (𝜑𝑇 = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  𝒫 cpw 4497  cmpt 5110  cfv 6324  (class class class)co 7135  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138
This theorem is referenced by:  ntrclselnel1  40760  ntrclsfv  40762  ntrclscls00  40769  ntrclsiso  40770  ntrclsk2  40771  ntrclskb  40772  ntrclsk3  40773  ntrclsk13  40774  dssmapntrcls  40831
  Copyright terms: Public domain W3C validator