Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfv3d Structured version   Visualization version   GIF version

Theorem dssmapfv3d 44001
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹 and subset 𝑆. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
dssmapfv2d.f (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))
dssmapfv2d.g 𝐺 = (𝐷𝐹)
dssmapfv3d.s (𝜑𝑆 ∈ 𝒫 𝐵)
dssmapfv3d.t 𝑇 = (𝐺𝑆)
Assertion
Ref Expression
dssmapfv3d (𝜑𝑇 = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑏,𝑓,𝑠   𝑓,𝐹,𝑠   𝑆,𝑠   𝜑,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝑆(𝑓,𝑏)   𝑇(𝑓,𝑠,𝑏)   𝐹(𝑏)   𝐺(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapfv3d
StepHypRef Expression
1 dssmapfv3d.t . 2 𝑇 = (𝐺𝑆)
2 dssmapfvd.o . . . 4 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
3 dssmapfvd.d . . . 4 𝐷 = (𝑂𝐵)
4 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
5 dssmapfv2d.f . . . 4 (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))
6 dssmapfv2d.g . . . 4 𝐺 = (𝐷𝐹)
72, 3, 4, 5, 6dssmapfv2d 44000 . . 3 (𝜑𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))))
8 difeq2 4085 . . . . . 6 (𝑠 = 𝑆 → (𝐵𝑠) = (𝐵𝑆))
98fveq2d 6864 . . . . 5 (𝑠 = 𝑆 → (𝐹‘(𝐵𝑠)) = (𝐹‘(𝐵𝑆)))
109difeq2d 4091 . . . 4 (𝑠 = 𝑆 → (𝐵 ∖ (𝐹‘(𝐵𝑠))) = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
1110adantl 481 . . 3 ((𝜑𝑠 = 𝑆) → (𝐵 ∖ (𝐹‘(𝐵𝑠))) = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
12 dssmapfv3d.s . . 3 (𝜑𝑆 ∈ 𝒫 𝐵)
134difexd 5288 . . 3 (𝜑 → (𝐵 ∖ (𝐹‘(𝐵𝑆))) ∈ V)
147, 11, 12, 13fvmptd 6977 . 2 (𝜑 → (𝐺𝑆) = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
151, 14eqtrid 2777 1 (𝜑𝑇 = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3913  𝒫 cpw 4565  cmpt 5190  cfv 6513  (class class class)co 7389  m cmap 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392
This theorem is referenced by:  ntrclselnel1  44039  ntrclsfv  44041  ntrclscls00  44048  ntrclsiso  44049  ntrclsk2  44050  ntrclskb  44051  ntrclsk3  44052  ntrclsk13  44053  dssmapntrcls  44110
  Copyright terms: Public domain W3C validator