| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapfvd | Structured version Visualization version GIF version | ||
| Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dssmapfvd | ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapfvd.d | . 2 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 2 | dssmapfvd.o | . . 3 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 3 | pweq 4579 | . . . . 5 ⊢ (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵) | |
| 4 | 3, 3 | oveq12d 7407 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝒫 𝑏 ↑m 𝒫 𝑏) = (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 5 | id 22 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 6 | difeq1 4084 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑏 ∖ 𝑠) = (𝐵 ∖ 𝑠)) | |
| 7 | 6 | fveq2d 6864 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑓‘(𝑏 ∖ 𝑠)) = (𝑓‘(𝐵 ∖ 𝑠))) |
| 8 | 5, 7 | difeq12d 4092 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠))) = (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) |
| 9 | 3, 8 | mpteq12dv 5196 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) |
| 10 | 4, 9 | mpteq12dv 5196 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠))))) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| 11 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 12 | 11 | elexd 3474 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 13 | ovex 7422 | . . . 4 ⊢ (𝒫 𝐵 ↑m 𝒫 𝐵) ∈ V | |
| 14 | mptexg 7197 | . . . 4 ⊢ ((𝒫 𝐵 ↑m 𝒫 𝐵) ∈ V → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) ∈ V) | |
| 15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) ∈ V) |
| 16 | 2, 10, 12, 15 | fvmptd3 6993 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| 17 | 1, 16 | eqtrid 2777 | 1 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3913 𝒫 cpw 4565 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 |
| This theorem is referenced by: dssmapfv2d 44000 dssmapnvod 44002 dssmapf1od 44003 |
| Copyright terms: Public domain | W3C validator |