![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapfvd | Structured version Visualization version GIF version |
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.) |
Ref | Expression |
---|---|
dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
dssmapfvd | ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapfvd.d | . 2 ⊢ 𝐷 = (𝑂‘𝐵) | |
2 | dssmapfvd.o | . . 3 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
3 | pweq 4617 | . . . . 5 ⊢ (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵) | |
4 | 3, 3 | oveq12d 7435 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝒫 𝑏 ↑m 𝒫 𝑏) = (𝒫 𝐵 ↑m 𝒫 𝐵)) |
5 | id 22 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
6 | difeq1 4112 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑏 ∖ 𝑠) = (𝐵 ∖ 𝑠)) | |
7 | 6 | fveq2d 6898 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑓‘(𝑏 ∖ 𝑠)) = (𝑓‘(𝐵 ∖ 𝑠))) |
8 | 5, 7 | difeq12d 4120 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠))) = (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) |
9 | 3, 8 | mpteq12dv 5239 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) |
10 | 4, 9 | mpteq12dv 5239 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠))))) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
11 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
12 | 11 | elexd 3485 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
13 | ovex 7450 | . . . 4 ⊢ (𝒫 𝐵 ↑m 𝒫 𝐵) ∈ V | |
14 | mptexg 7231 | . . . 4 ⊢ ((𝒫 𝐵 ↑m 𝒫 𝐵) ∈ V → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) ∈ V) | |
15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) ∈ V) |
16 | 2, 10, 12, 15 | fvmptd3 7025 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
17 | 1, 16 | eqtrid 2777 | 1 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ∖ cdif 3942 𝒫 cpw 4603 ↦ cmpt 5231 ‘cfv 6547 (class class class)co 7417 ↑m cmap 8843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 |
This theorem is referenced by: dssmapfv2d 43513 dssmapnvod 43515 dssmapf1od 43516 |
Copyright terms: Public domain | W3C validator |