Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfvd Structured version   Visualization version   GIF version

Theorem dssmapfvd 44006
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
dssmapfvd (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Distinct variable groups:   𝐵,𝑏,𝑓   𝐵,𝑠,𝑏   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑓,𝑠)   𝐷(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapfvd
StepHypRef Expression
1 dssmapfvd.d . 2 𝐷 = (𝑂𝐵)
2 dssmapfvd.o . . 3 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
3 pweq 4577 . . . . 5 (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵)
43, 3oveq12d 7405 . . . 4 (𝑏 = 𝐵 → (𝒫 𝑏m 𝒫 𝑏) = (𝒫 𝐵m 𝒫 𝐵))
5 id 22 . . . . . 6 (𝑏 = 𝐵𝑏 = 𝐵)
6 difeq1 4082 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑠) = (𝐵𝑠))
76fveq2d 6862 . . . . . 6 (𝑏 = 𝐵 → (𝑓‘(𝑏𝑠)) = (𝑓‘(𝐵𝑠)))
85, 7difeq12d 4090 . . . . 5 (𝑏 = 𝐵 → (𝑏 ∖ (𝑓‘(𝑏𝑠))) = (𝐵 ∖ (𝑓‘(𝐵𝑠))))
93, 8mpteq12dv 5194 . . . 4 (𝑏 = 𝐵 → (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))))
104, 9mpteq12dv 5194 . . 3 (𝑏 = 𝐵 → (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
11 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
1211elexd 3471 . . 3 (𝜑𝐵 ∈ V)
13 ovex 7420 . . . 4 (𝒫 𝐵m 𝒫 𝐵) ∈ V
14 mptexg 7195 . . . 4 ((𝒫 𝐵m 𝒫 𝐵) ∈ V → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
1513, 14mp1i 13 . . 3 (𝜑 → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
162, 10, 12, 15fvmptd3 6991 . 2 (𝜑 → (𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
171, 16eqtrid 2776 1 (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  𝒫 cpw 4563  cmpt 5188  cfv 6511  (class class class)co 7387  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390
This theorem is referenced by:  dssmapfv2d  44007  dssmapnvod  44009  dssmapf1od  44010
  Copyright terms: Public domain W3C validator