Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfvd Structured version   Visualization version   GIF version

Theorem dssmapfvd 41514
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
dssmapfvd (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Distinct variable groups:   𝐵,𝑏,𝑓   𝐵,𝑠,𝑏   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑓,𝑠)   𝐷(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapfvd
StepHypRef Expression
1 dssmapfvd.d . 2 𝐷 = (𝑂𝐵)
2 dssmapfvd.o . . 3 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
3 pweq 4546 . . . . 5 (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵)
43, 3oveq12d 7273 . . . 4 (𝑏 = 𝐵 → (𝒫 𝑏m 𝒫 𝑏) = (𝒫 𝐵m 𝒫 𝐵))
5 id 22 . . . . . 6 (𝑏 = 𝐵𝑏 = 𝐵)
6 difeq1 4046 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑠) = (𝐵𝑠))
76fveq2d 6760 . . . . . 6 (𝑏 = 𝐵 → (𝑓‘(𝑏𝑠)) = (𝑓‘(𝐵𝑠)))
85, 7difeq12d 4054 . . . . 5 (𝑏 = 𝐵 → (𝑏 ∖ (𝑓‘(𝑏𝑠))) = (𝐵 ∖ (𝑓‘(𝐵𝑠))))
93, 8mpteq12dv 5161 . . . 4 (𝑏 = 𝐵 → (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))))
104, 9mpteq12dv 5161 . . 3 (𝑏 = 𝐵 → (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
11 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
1211elexd 3442 . . 3 (𝜑𝐵 ∈ V)
13 ovex 7288 . . . 4 (𝒫 𝐵m 𝒫 𝐵) ∈ V
14 mptexg 7079 . . . 4 ((𝒫 𝐵m 𝒫 𝐵) ∈ V → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
1513, 14mp1i 13 . . 3 (𝜑 → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
162, 10, 12, 15fvmptd3 6880 . 2 (𝜑 → (𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
171, 16syl5eq 2791 1 (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  𝒫 cpw 4530  cmpt 5153  cfv 6418  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258
This theorem is referenced by:  dssmapfv2d  41515  dssmapnvod  41517  dssmapf1od  41518
  Copyright terms: Public domain W3C validator