Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfvd Structured version   Visualization version   GIF version

Theorem dssmapfvd 44029
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
dssmapfvd (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Distinct variable groups:   𝐵,𝑏,𝑓   𝐵,𝑠,𝑏   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑓,𝑠)   𝐷(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapfvd
StepHypRef Expression
1 dssmapfvd.d . 2 𝐷 = (𝑂𝐵)
2 dssmapfvd.o . . 3 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
3 pweq 4562 . . . . 5 (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵)
43, 3oveq12d 7359 . . . 4 (𝑏 = 𝐵 → (𝒫 𝑏m 𝒫 𝑏) = (𝒫 𝐵m 𝒫 𝐵))
5 id 22 . . . . . 6 (𝑏 = 𝐵𝑏 = 𝐵)
6 difeq1 4067 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑠) = (𝐵𝑠))
76fveq2d 6821 . . . . . 6 (𝑏 = 𝐵 → (𝑓‘(𝑏𝑠)) = (𝑓‘(𝐵𝑠)))
85, 7difeq12d 4075 . . . . 5 (𝑏 = 𝐵 → (𝑏 ∖ (𝑓‘(𝑏𝑠))) = (𝐵 ∖ (𝑓‘(𝐵𝑠))))
93, 8mpteq12dv 5176 . . . 4 (𝑏 = 𝐵 → (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))))
104, 9mpteq12dv 5176 . . 3 (𝑏 = 𝐵 → (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
11 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
1211elexd 3458 . . 3 (𝜑𝐵 ∈ V)
13 ovex 7374 . . . 4 (𝒫 𝐵m 𝒫 𝐵) ∈ V
14 mptexg 7150 . . . 4 ((𝒫 𝐵m 𝒫 𝐵) ∈ V → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
1513, 14mp1i 13 . . 3 (𝜑 → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
162, 10, 12, 15fvmptd3 6947 . 2 (𝜑 → (𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
171, 16eqtrid 2777 1 (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  Vcvv 3434  cdif 3897  𝒫 cpw 4548  cmpt 5170  cfv 6477  (class class class)co 7341  m cmap 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344
This theorem is referenced by:  dssmapfv2d  44030  dssmapnvod  44032  dssmapf1od  44033
  Copyright terms: Public domain W3C validator