Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfvd Structured version   Visualization version   GIF version

Theorem dssmapfvd 43512
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
dssmapfvd (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Distinct variable groups:   𝐵,𝑏,𝑓   𝐵,𝑠,𝑏   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑓,𝑠)   𝐷(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapfvd
StepHypRef Expression
1 dssmapfvd.d . 2 𝐷 = (𝑂𝐵)
2 dssmapfvd.o . . 3 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
3 pweq 4617 . . . . 5 (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵)
43, 3oveq12d 7435 . . . 4 (𝑏 = 𝐵 → (𝒫 𝑏m 𝒫 𝑏) = (𝒫 𝐵m 𝒫 𝐵))
5 id 22 . . . . . 6 (𝑏 = 𝐵𝑏 = 𝐵)
6 difeq1 4112 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑠) = (𝐵𝑠))
76fveq2d 6898 . . . . . 6 (𝑏 = 𝐵 → (𝑓‘(𝑏𝑠)) = (𝑓‘(𝐵𝑠)))
85, 7difeq12d 4120 . . . . 5 (𝑏 = 𝐵 → (𝑏 ∖ (𝑓‘(𝑏𝑠))) = (𝐵 ∖ (𝑓‘(𝐵𝑠))))
93, 8mpteq12dv 5239 . . . 4 (𝑏 = 𝐵 → (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))))
104, 9mpteq12dv 5239 . . 3 (𝑏 = 𝐵 → (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
11 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
1211elexd 3485 . . 3 (𝜑𝐵 ∈ V)
13 ovex 7450 . . . 4 (𝒫 𝐵m 𝒫 𝐵) ∈ V
14 mptexg 7231 . . . 4 ((𝒫 𝐵m 𝒫 𝐵) ∈ V → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
1513, 14mp1i 13 . . 3 (𝜑 → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
162, 10, 12, 15fvmptd3 7025 . 2 (𝜑 → (𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
171, 16eqtrid 2777 1 (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3463  cdif 3942  𝒫 cpw 4603  cmpt 5231  cfv 6547  (class class class)co 7417  m cmap 8843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420
This theorem is referenced by:  dssmapfv2d  43513  dssmapnvod  43515  dssmapf1od  43516
  Copyright terms: Public domain W3C validator