| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapfvd | Structured version Visualization version GIF version | ||
| Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dssmapfvd | ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapfvd.d | . 2 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 2 | dssmapfvd.o | . . 3 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 3 | pweq 4577 | . . . . 5 ⊢ (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵) | |
| 4 | 3, 3 | oveq12d 7405 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝒫 𝑏 ↑m 𝒫 𝑏) = (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 5 | id 22 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 6 | difeq1 4082 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑏 ∖ 𝑠) = (𝐵 ∖ 𝑠)) | |
| 7 | 6 | fveq2d 6862 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑓‘(𝑏 ∖ 𝑠)) = (𝑓‘(𝐵 ∖ 𝑠))) |
| 8 | 5, 7 | difeq12d 4090 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠))) = (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) |
| 9 | 3, 8 | mpteq12dv 5194 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) |
| 10 | 4, 9 | mpteq12dv 5194 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠))))) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| 11 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 12 | 11 | elexd 3471 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 13 | ovex 7420 | . . . 4 ⊢ (𝒫 𝐵 ↑m 𝒫 𝐵) ∈ V | |
| 14 | mptexg 7195 | . . . 4 ⊢ ((𝒫 𝐵 ↑m 𝒫 𝐵) ∈ V → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) ∈ V) | |
| 15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) ∈ V) |
| 16 | 2, 10, 12, 15 | fvmptd3 6991 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| 17 | 1, 16 | eqtrid 2776 | 1 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 𝒫 cpw 4563 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: dssmapfv2d 44007 dssmapnvod 44009 dssmapf1od 44010 |
| Copyright terms: Public domain | W3C validator |