Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapfvd Structured version   Visualization version   GIF version

Theorem dssmapfvd 44041
Description: Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
dssmapfvd (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Distinct variable groups:   𝐵,𝑏,𝑓   𝐵,𝑠,𝑏   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑓,𝑠)   𝐷(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapfvd
StepHypRef Expression
1 dssmapfvd.d . 2 𝐷 = (𝑂𝐵)
2 dssmapfvd.o . . 3 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
3 pweq 4589 . . . . 5 (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵)
43, 3oveq12d 7423 . . . 4 (𝑏 = 𝐵 → (𝒫 𝑏m 𝒫 𝑏) = (𝒫 𝐵m 𝒫 𝐵))
5 id 22 . . . . . 6 (𝑏 = 𝐵𝑏 = 𝐵)
6 difeq1 4094 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑠) = (𝐵𝑠))
76fveq2d 6880 . . . . . 6 (𝑏 = 𝐵 → (𝑓‘(𝑏𝑠)) = (𝑓‘(𝐵𝑠)))
85, 7difeq12d 4102 . . . . 5 (𝑏 = 𝐵 → (𝑏 ∖ (𝑓‘(𝑏𝑠))) = (𝐵 ∖ (𝑓‘(𝐵𝑠))))
93, 8mpteq12dv 5207 . . . 4 (𝑏 = 𝐵 → (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))))
104, 9mpteq12dv 5207 . . 3 (𝑏 = 𝐵 → (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
11 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
1211elexd 3483 . . 3 (𝜑𝐵 ∈ V)
13 ovex 7438 . . . 4 (𝒫 𝐵m 𝒫 𝐵) ∈ V
14 mptexg 7213 . . . 4 ((𝒫 𝐵m 𝒫 𝐵) ∈ V → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
1513, 14mp1i 13 . . 3 (𝜑 → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) ∈ V)
162, 10, 12, 15fvmptd3 7009 . 2 (𝜑 → (𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
171, 16eqtrid 2782 1 (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923  𝒫 cpw 4575  cmpt 5201  cfv 6531  (class class class)co 7405  m cmap 8840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408
This theorem is referenced by:  dssmapfv2d  44042  dssmapnvod  44044  dssmapf1od  44045
  Copyright terms: Public domain W3C validator