MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmres Structured version   Visualization version   GIF version

Theorem lmres 23216
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmres.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmres.4 (𝜑𝐹 ∈ (𝑋pm ℂ))
lmres.5 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
lmres (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))

Proof of Theorem lmres
Dummy variables 𝑗 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmres.2 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponmax 22842 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
31, 2syl 17 . . . . . 6 (𝜑𝑋𝐽)
4 cnex 11094 . . . . . 6 ℂ ∈ V
5 ssid 3953 . . . . . . 7 𝑋𝑋
6 uzssz 12759 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
7 zsscn 12483 . . . . . . . 8 ℤ ⊆ ℂ
86, 7sstri 3940 . . . . . . 7 (ℤ𝑀) ⊆ ℂ
9 pmss12g 8799 . . . . . . 7 (((𝑋𝑋 ∧ (ℤ𝑀) ⊆ ℂ) ∧ (𝑋𝐽 ∧ ℂ ∈ V)) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
105, 8, 9mpanl12 702 . . . . . 6 ((𝑋𝐽 ∧ ℂ ∈ V) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
113, 4, 10sylancl 586 . . . . 5 (𝜑 → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
12 fvex 6841 . . . . . 6 (ℤ𝑀) ∈ V
13 lmres.4 . . . . . 6 (𝜑𝐹 ∈ (𝑋pm ℂ))
14 pmresg 8800 . . . . . 6 (((ℤ𝑀) ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1512, 13, 14sylancr 587 . . . . 5 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1611, 15sseldd 3931 . . . 4 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ))
1716, 132thd 265 . . 3 (𝜑 → ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ↔ 𝐹 ∈ (𝑋pm ℂ)))
18 eqid 2733 . . . . . . . . . 10 (ℤ𝑀) = (ℤ𝑀)
1918uztrn2 12757 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑀))
20 dmres 5965 . . . . . . . . . . . 12 dom (𝐹 ↾ (ℤ𝑀)) = ((ℤ𝑀) ∩ dom 𝐹)
2120elin2 4152 . . . . . . . . . . 11 (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑘 ∈ dom 𝐹))
2221baib 535 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ 𝑘 ∈ dom 𝐹))
23 fvres 6847 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
2423eleq1d 2818 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑢))
2522, 24anbi12d 632 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2619, 25syl 17 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2726ralbidva 3154 . . . . . . 7 (𝑗 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2827rexbiia 3078 . . . . . 6 (∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
2928imbi2i 336 . . . . 5 ((𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3029ralbii 3079 . . . 4 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3130a1i 11 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3217, 313anbi13d 1440 . 2 (𝜑 → (((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
33 lmres.5 . . 3 (𝜑𝑀 ∈ ℤ)
341, 18, 33lmbr2 23175 . 2 (𝜑 → ((𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃 ↔ ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)))))
351, 18, 33lmbr2 23175 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
3632, 34, 353bitr4rd 312 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  wss 3898   class class class wbr 5093  dom cdm 5619  cres 5621  cfv 6486  (class class class)co 7352  pm cpm 8757  cc 11011  cz 12475  cuz 12738  TopOnctopon 22826  𝑡clm 23142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-neg 11354  df-z 12476  df-uz 12739  df-top 22810  df-topon 22827  df-lm 23145
This theorem is referenced by:  esumcvg  34120  xlimres  45943
  Copyright terms: Public domain W3C validator