Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caures Structured version   Visualization version   GIF version

Theorem caures 35995
Description: The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caures.5 (𝜑𝐹 ∈ (𝑋pm ℂ))
Assertion
Ref Expression
caures (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))

Proof of Theorem caures
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caures.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
21uztrn2 12680 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
32adantll 711 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43biantrurd 533 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ↔ (𝑘𝑍𝑘 ∈ dom 𝐹)))
5 dmres 5932 . . . . . . . . 9 dom (𝐹𝑍) = (𝑍 ∩ dom 𝐹)
65elin2 4141 . . . . . . . 8 (𝑘 ∈ dom (𝐹𝑍) ↔ (𝑘𝑍𝑘 ∈ dom 𝐹))
74, 6bitr4di 288 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹𝑘 ∈ dom (𝐹𝑍)))
873anbi1d 1439 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
98ralbidva 3168 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
109rexbidva 3169 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
1110ralbidv 3170 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
12 caures.5 . . . 4 (𝜑𝐹 ∈ (𝑋pm ℂ))
1312biantrurd 533 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
14 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
15 elfvdm 6845 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met)
1614, 15syl 17 . . . . . 6 (𝜑𝑋 ∈ dom Met)
17 cnex 11031 . . . . . 6 ℂ ∈ V
18 ssid 3952 . . . . . . 7 𝑋𝑋
19 uzssz 12682 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
20 zsscn 12406 . . . . . . . . 9 ℤ ⊆ ℂ
2119, 20sstri 3939 . . . . . . . 8 (ℤ𝑀) ⊆ ℂ
221, 21eqsstri 3964 . . . . . . 7 𝑍 ⊆ ℂ
23 pmss12g 8706 . . . . . . 7 (((𝑋𝑋𝑍 ⊆ ℂ) ∧ (𝑋 ∈ dom Met ∧ ℂ ∈ V)) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2418, 22, 23mpanl12 699 . . . . . 6 ((𝑋 ∈ dom Met ∧ ℂ ∈ V) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2516, 17, 24sylancl 586 . . . . 5 (𝜑 → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
261fvexi 6825 . . . . . 6 𝑍 ∈ V
27 pmresg 8707 . . . . . 6 ((𝑍 ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2826, 12, 27sylancr 587 . . . . 5 (𝜑 → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2925, 28sseldd 3931 . . . 4 (𝜑 → (𝐹𝑍) ∈ (𝑋pm ℂ))
3029biantrurd 533 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
3111, 13, 303bitr3d 308 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
32 metxmet 23567 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3314, 32syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
34 caures.3 . . 3 (𝜑𝑀 ∈ ℤ)
35 eqidd 2737 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
36 eqidd 2737 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
371, 33, 34, 35, 36iscau4 24523 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
38 fvres 6830 . . . 4 (𝑘𝑍 → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
3938adantl 482 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
40 fvres 6830 . . . 4 (𝑗𝑍 → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
4140adantl 482 . . 3 ((𝜑𝑗𝑍) → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
421, 33, 34, 39, 41iscau4 24523 . 2 (𝜑 → ((𝐹𝑍) ∈ (Cau‘𝐷) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
4331, 37, 423bitr4d 310 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wrex 3070  Vcvv 3440  wss 3896   class class class wbr 5086  dom cdm 5607  cres 5609  cfv 6465  (class class class)co 7316  pm cpm 8665  cc 10948   < clt 11088  cz 12398  cuz 12661  +crp 12809  ∞Metcxmet 20662  Metcmet 20663  Cauccau 24497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-po 5520  df-so 5521  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-1st 7877  df-2nd 7878  df-er 8547  df-map 8666  df-pm 8667  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-2 12115  df-z 12399  df-uz 12662  df-rp 12810  df-xneg 12927  df-xadd 12928  df-psmet 20669  df-xmet 20670  df-met 20671  df-bl 20672  df-cau 24500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator