Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caures Structured version   Visualization version   GIF version

Theorem caures 37746
Description: The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caures.5 (𝜑𝐹 ∈ (𝑋pm ℂ))
Assertion
Ref Expression
caures (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))

Proof of Theorem caures
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caures.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
21uztrn2 12894 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
32adantll 714 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43biantrurd 532 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ↔ (𝑘𝑍𝑘 ∈ dom 𝐹)))
5 dmres 6031 . . . . . . . . 9 dom (𝐹𝑍) = (𝑍 ∩ dom 𝐹)
65elin2 4212 . . . . . . . 8 (𝑘 ∈ dom (𝐹𝑍) ↔ (𝑘𝑍𝑘 ∈ dom 𝐹))
74, 6bitr4di 289 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹𝑘 ∈ dom (𝐹𝑍)))
873anbi1d 1439 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
98ralbidva 3173 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
109rexbidva 3174 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
1110ralbidv 3175 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
12 caures.5 . . . 4 (𝜑𝐹 ∈ (𝑋pm ℂ))
1312biantrurd 532 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
14 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
15 elfvdm 6943 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met)
1614, 15syl 17 . . . . . 6 (𝜑𝑋 ∈ dom Met)
17 cnex 11233 . . . . . 6 ℂ ∈ V
18 ssid 4017 . . . . . . 7 𝑋𝑋
19 uzssz 12896 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
20 zsscn 12618 . . . . . . . . 9 ℤ ⊆ ℂ
2119, 20sstri 4004 . . . . . . . 8 (ℤ𝑀) ⊆ ℂ
221, 21eqsstri 4029 . . . . . . 7 𝑍 ⊆ ℂ
23 pmss12g 8907 . . . . . . 7 (((𝑋𝑋𝑍 ⊆ ℂ) ∧ (𝑋 ∈ dom Met ∧ ℂ ∈ V)) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2418, 22, 23mpanl12 702 . . . . . 6 ((𝑋 ∈ dom Met ∧ ℂ ∈ V) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2516, 17, 24sylancl 586 . . . . 5 (𝜑 → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
261fvexi 6920 . . . . . 6 𝑍 ∈ V
27 pmresg 8908 . . . . . 6 ((𝑍 ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2826, 12, 27sylancr 587 . . . . 5 (𝜑 → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2925, 28sseldd 3995 . . . 4 (𝜑 → (𝐹𝑍) ∈ (𝑋pm ℂ))
3029biantrurd 532 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
3111, 13, 303bitr3d 309 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
32 metxmet 24359 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3314, 32syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
34 caures.3 . . 3 (𝜑𝑀 ∈ ℤ)
35 eqidd 2735 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
36 eqidd 2735 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
371, 33, 34, 35, 36iscau4 25326 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
38 fvres 6925 . . . 4 (𝑘𝑍 → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
3938adantl 481 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
40 fvres 6925 . . . 4 (𝑗𝑍 → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
4140adantl 481 . . 3 ((𝜑𝑗𝑍) → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
421, 33, 34, 39, 41iscau4 25326 . 2 (𝜑 → ((𝐹𝑍) ∈ (Cau‘𝐷) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
4331, 37, 423bitr4d 311 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  wss 3962   class class class wbr 5147  dom cdm 5688  cres 5690  cfv 6562  (class class class)co 7430  pm cpm 8865  cc 11150   < clt 11292  cz 12610  cuz 12875  +crp 13031  ∞Metcxmet 21366  Metcmet 21367  Cauccau 25300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-2 12326  df-z 12611  df-uz 12876  df-rp 13032  df-xneg 13151  df-xadd 13152  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-cau 25303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator