Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caures Structured version   Visualization version   GIF version

Theorem caures 35918
Description: The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caures.5 (𝜑𝐹 ∈ (𝑋pm ℂ))
Assertion
Ref Expression
caures (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))

Proof of Theorem caures
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caures.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
21uztrn2 12601 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
32adantll 711 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43biantrurd 533 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ↔ (𝑘𝑍𝑘 ∈ dom 𝐹)))
5 dmres 5913 . . . . . . . . 9 dom (𝐹𝑍) = (𝑍 ∩ dom 𝐹)
65elin2 4131 . . . . . . . 8 (𝑘 ∈ dom (𝐹𝑍) ↔ (𝑘𝑍𝑘 ∈ dom 𝐹))
74, 6bitr4di 289 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹𝑘 ∈ dom (𝐹𝑍)))
873anbi1d 1439 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
98ralbidva 3111 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
109rexbidva 3225 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
1110ralbidv 3112 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
12 caures.5 . . . 4 (𝜑𝐹 ∈ (𝑋pm ℂ))
1312biantrurd 533 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
14 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
15 elfvdm 6806 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met)
1614, 15syl 17 . . . . . 6 (𝜑𝑋 ∈ dom Met)
17 cnex 10952 . . . . . 6 ℂ ∈ V
18 ssid 3943 . . . . . . 7 𝑋𝑋
19 uzssz 12603 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
20 zsscn 12327 . . . . . . . . 9 ℤ ⊆ ℂ
2119, 20sstri 3930 . . . . . . . 8 (ℤ𝑀) ⊆ ℂ
221, 21eqsstri 3955 . . . . . . 7 𝑍 ⊆ ℂ
23 pmss12g 8657 . . . . . . 7 (((𝑋𝑋𝑍 ⊆ ℂ) ∧ (𝑋 ∈ dom Met ∧ ℂ ∈ V)) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2418, 22, 23mpanl12 699 . . . . . 6 ((𝑋 ∈ dom Met ∧ ℂ ∈ V) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2516, 17, 24sylancl 586 . . . . 5 (𝜑 → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
261fvexi 6788 . . . . . 6 𝑍 ∈ V
27 pmresg 8658 . . . . . 6 ((𝑍 ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2826, 12, 27sylancr 587 . . . . 5 (𝜑 → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2925, 28sseldd 3922 . . . 4 (𝜑 → (𝐹𝑍) ∈ (𝑋pm ℂ))
3029biantrurd 533 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
3111, 13, 303bitr3d 309 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
32 metxmet 23487 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3314, 32syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
34 caures.3 . . 3 (𝜑𝑀 ∈ ℤ)
35 eqidd 2739 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
36 eqidd 2739 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
371, 33, 34, 35, 36iscau4 24443 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
38 fvres 6793 . . . 4 (𝑘𝑍 → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
3938adantl 482 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
40 fvres 6793 . . . 4 (𝑗𝑍 → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
4140adantl 482 . . 3 ((𝜑𝑗𝑍) → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
421, 33, 34, 39, 41iscau4 24443 . 2 (𝜑 → ((𝐹𝑍) ∈ (Cau‘𝐷) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
4331, 37, 423bitr4d 311 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  dom cdm 5589  cres 5591  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869   < clt 11009  cz 12319  cuz 12582  +crp 12730  ∞Metcxmet 20582  Metcmet 20583  Cauccau 24417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-z 12320  df-uz 12583  df-rp 12731  df-xneg 12848  df-xadd 12849  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-cau 24420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator