Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caures Structured version   Visualization version   GIF version

Theorem caures 37720
Description: The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caures.5 (𝜑𝐹 ∈ (𝑋pm ℂ))
Assertion
Ref Expression
caures (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))

Proof of Theorem caures
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caures.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
21uztrn2 12922 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
32adantll 713 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43biantrurd 532 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ↔ (𝑘𝑍𝑘 ∈ dom 𝐹)))
5 dmres 6041 . . . . . . . . 9 dom (𝐹𝑍) = (𝑍 ∩ dom 𝐹)
65elin2 4226 . . . . . . . 8 (𝑘 ∈ dom (𝐹𝑍) ↔ (𝑘𝑍𝑘 ∈ dom 𝐹))
74, 6bitr4di 289 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹𝑘 ∈ dom (𝐹𝑍)))
873anbi1d 1440 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
98ralbidva 3182 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
109rexbidva 3183 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
1110ralbidv 3184 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
12 caures.5 . . . 4 (𝜑𝐹 ∈ (𝑋pm ℂ))
1312biantrurd 532 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
14 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
15 elfvdm 6957 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met)
1614, 15syl 17 . . . . . 6 (𝜑𝑋 ∈ dom Met)
17 cnex 11265 . . . . . 6 ℂ ∈ V
18 ssid 4031 . . . . . . 7 𝑋𝑋
19 uzssz 12924 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
20 zsscn 12647 . . . . . . . . 9 ℤ ⊆ ℂ
2119, 20sstri 4018 . . . . . . . 8 (ℤ𝑀) ⊆ ℂ
221, 21eqsstri 4043 . . . . . . 7 𝑍 ⊆ ℂ
23 pmss12g 8927 . . . . . . 7 (((𝑋𝑋𝑍 ⊆ ℂ) ∧ (𝑋 ∈ dom Met ∧ ℂ ∈ V)) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2418, 22, 23mpanl12 701 . . . . . 6 ((𝑋 ∈ dom Met ∧ ℂ ∈ V) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2516, 17, 24sylancl 585 . . . . 5 (𝜑 → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
261fvexi 6934 . . . . . 6 𝑍 ∈ V
27 pmresg 8928 . . . . . 6 ((𝑍 ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2826, 12, 27sylancr 586 . . . . 5 (𝜑 → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2925, 28sseldd 4009 . . . 4 (𝜑 → (𝐹𝑍) ∈ (𝑋pm ℂ))
3029biantrurd 532 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
3111, 13, 303bitr3d 309 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
32 metxmet 24365 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3314, 32syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
34 caures.3 . . 3 (𝜑𝑀 ∈ ℤ)
35 eqidd 2741 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
36 eqidd 2741 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
371, 33, 34, 35, 36iscau4 25332 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
38 fvres 6939 . . . 4 (𝑘𝑍 → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
3938adantl 481 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
40 fvres 6939 . . . 4 (𝑗𝑍 → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
4140adantl 481 . . 3 ((𝜑𝑗𝑍) → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
421, 33, 34, 39, 41iscau4 25332 . 2 (𝜑 → ((𝐹𝑍) ∈ (Cau‘𝐷) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
4331, 37, 423bitr4d 311 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  dom cdm 5700  cres 5702  cfv 6573  (class class class)co 7448  pm cpm 8885  cc 11182   < clt 11324  cz 12639  cuz 12903  +crp 13057  ∞Metcxmet 21372  Metcmet 21373  Cauccau 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-z 12640  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-cau 25309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator