Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caures Structured version   Visualization version   GIF version

Theorem caures 35197
Description: The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caures.5 (𝜑𝐹 ∈ (𝑋pm ℂ))
Assertion
Ref Expression
caures (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))

Proof of Theorem caures
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caures.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
21uztrn2 12254 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
32adantll 713 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43biantrurd 536 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ↔ (𝑘𝑍𝑘 ∈ dom 𝐹)))
5 dmres 5844 . . . . . . . . 9 dom (𝐹𝑍) = (𝑍 ∩ dom 𝐹)
65elin2 4127 . . . . . . . 8 (𝑘 ∈ dom (𝐹𝑍) ↔ (𝑘𝑍𝑘 ∈ dom 𝐹))
74, 6syl6bbr 292 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹𝑘 ∈ dom (𝐹𝑍)))
873anbi1d 1437 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
98ralbidva 3164 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
109rexbidva 3258 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
1110ralbidv 3165 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
12 caures.5 . . . 4 (𝜑𝐹 ∈ (𝑋pm ℂ))
1312biantrurd 536 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
14 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
15 elfvdm 6681 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met)
1614, 15syl 17 . . . . . 6 (𝜑𝑋 ∈ dom Met)
17 cnex 10611 . . . . . 6 ℂ ∈ V
18 ssid 3940 . . . . . . 7 𝑋𝑋
19 uzssz 12256 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
20 zsscn 11981 . . . . . . . . 9 ℤ ⊆ ℂ
2119, 20sstri 3927 . . . . . . . 8 (ℤ𝑀) ⊆ ℂ
221, 21eqsstri 3952 . . . . . . 7 𝑍 ⊆ ℂ
23 pmss12g 8420 . . . . . . 7 (((𝑋𝑋𝑍 ⊆ ℂ) ∧ (𝑋 ∈ dom Met ∧ ℂ ∈ V)) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2418, 22, 23mpanl12 701 . . . . . 6 ((𝑋 ∈ dom Met ∧ ℂ ∈ V) → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
2516, 17, 24sylancl 589 . . . . 5 (𝜑 → (𝑋pm 𝑍) ⊆ (𝑋pm ℂ))
261fvexi 6663 . . . . . 6 𝑍 ∈ V
27 pmresg 8421 . . . . . 6 ((𝑍 ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2826, 12, 27sylancr 590 . . . . 5 (𝜑 → (𝐹𝑍) ∈ (𝑋pm 𝑍))
2925, 28sseldd 3919 . . . 4 (𝜑 → (𝐹𝑍) ∈ (𝑋pm ℂ))
3029biantrurd 536 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
3111, 13, 303bitr3d 312 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
32 metxmet 22945 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3314, 32syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
34 caures.3 . . 3 (𝜑𝑀 ∈ ℤ)
35 eqidd 2802 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
36 eqidd 2802 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
371, 33, 34, 35, 36iscau4 23887 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
38 fvres 6668 . . . 4 (𝑘𝑍 → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
3938adantl 485 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑍)‘𝑘) = (𝐹𝑘))
40 fvres 6668 . . . 4 (𝑗𝑍 → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
4140adantl 485 . . 3 ((𝜑𝑗𝑍) → ((𝐹𝑍)‘𝑗) = (𝐹𝑗))
421, 33, 34, 39, 41iscau4 23887 . 2 (𝜑 → ((𝐹𝑍) ∈ (Cau‘𝐷) ↔ ((𝐹𝑍) ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹𝑍) ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
4331, 37, 423bitr4d 314 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹𝑍) ∈ (Cau‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110  Vcvv 3444  wss 3884   class class class wbr 5033  dom cdm 5523  cres 5525  cfv 6328  (class class class)co 7139  pm cpm 8394  cc 10528   < clt 10668  cz 11973  cuz 12235  +crp 12381  ∞Metcxmet 20080  Metcmet 20081  Cauccau 23861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-2 11692  df-z 11974  df-uz 12236  df-rp 12382  df-xneg 12499  df-xadd 12500  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-cau 23864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator