Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caures Structured version   Visualization version   GIF version

Theorem caures 36933
Description: The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (β„€β‰₯β€˜π‘€)
caures.3 (πœ‘ β†’ 𝑀 ∈ β„€)
caures.4 (πœ‘ β†’ 𝐷 ∈ (Metβ€˜π‘‹))
caures.5 (πœ‘ β†’ 𝐹 ∈ (𝑋 ↑pm β„‚))
Assertion
Ref Expression
caures (πœ‘ β†’ (𝐹 ∈ (Cauβ€˜π·) ↔ (𝐹 β†Ύ 𝑍) ∈ (Cauβ€˜π·)))

Proof of Theorem caures
Dummy variables 𝑗 π‘˜ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caures.1 . . . . . . . . . . 11 𝑍 = (β„€β‰₯β€˜π‘€)
21uztrn2 12847 . . . . . . . . . 10 ((𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ π‘˜ ∈ 𝑍)
32adantll 710 . . . . . . . . 9 (((πœ‘ ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ π‘˜ ∈ 𝑍)
43biantrurd 531 . . . . . . . 8 (((πœ‘ ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ (π‘˜ ∈ dom 𝐹 ↔ (π‘˜ ∈ 𝑍 ∧ π‘˜ ∈ dom 𝐹)))
5 dmres 6004 . . . . . . . . 9 dom (𝐹 β†Ύ 𝑍) = (𝑍 ∩ dom 𝐹)
65elin2 4198 . . . . . . . 8 (π‘˜ ∈ dom (𝐹 β†Ύ 𝑍) ↔ (π‘˜ ∈ 𝑍 ∧ π‘˜ ∈ dom 𝐹))
74, 6bitr4di 288 . . . . . . 7 (((πœ‘ ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ (π‘˜ ∈ dom 𝐹 ↔ π‘˜ ∈ dom (𝐹 β†Ύ 𝑍)))
873anbi1d 1438 . . . . . 6 (((πœ‘ ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ ((π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯) ↔ (π‘˜ ∈ dom (𝐹 β†Ύ 𝑍) ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯)))
98ralbidva 3173 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ 𝑍) β†’ (βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯) ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom (𝐹 β†Ύ 𝑍) ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯)))
109rexbidva 3174 . . . 4 (πœ‘ β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯) ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom (𝐹 β†Ύ 𝑍) ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯)))
1110ralbidv 3175 . . 3 (πœ‘ β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯) ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom (𝐹 β†Ύ 𝑍) ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯)))
12 caures.5 . . . 4 (πœ‘ β†’ 𝐹 ∈ (𝑋 ↑pm β„‚))
1312biantrurd 531 . . 3 (πœ‘ β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯))))
14 caures.4 . . . . . . 7 (πœ‘ β†’ 𝐷 ∈ (Metβ€˜π‘‹))
15 elfvdm 6929 . . . . . . 7 (𝐷 ∈ (Metβ€˜π‘‹) β†’ 𝑋 ∈ dom Met)
1614, 15syl 17 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ dom Met)
17 cnex 11195 . . . . . 6 β„‚ ∈ V
18 ssid 4005 . . . . . . 7 𝑋 βŠ† 𝑋
19 uzssz 12849 . . . . . . . . 9 (β„€β‰₯β€˜π‘€) βŠ† β„€
20 zsscn 12572 . . . . . . . . 9 β„€ βŠ† β„‚
2119, 20sstri 3992 . . . . . . . 8 (β„€β‰₯β€˜π‘€) βŠ† β„‚
221, 21eqsstri 4017 . . . . . . 7 𝑍 βŠ† β„‚
23 pmss12g 8867 . . . . . . 7 (((𝑋 βŠ† 𝑋 ∧ 𝑍 βŠ† β„‚) ∧ (𝑋 ∈ dom Met ∧ β„‚ ∈ V)) β†’ (𝑋 ↑pm 𝑍) βŠ† (𝑋 ↑pm β„‚))
2418, 22, 23mpanl12 698 . . . . . 6 ((𝑋 ∈ dom Met ∧ β„‚ ∈ V) β†’ (𝑋 ↑pm 𝑍) βŠ† (𝑋 ↑pm β„‚))
2516, 17, 24sylancl 584 . . . . 5 (πœ‘ β†’ (𝑋 ↑pm 𝑍) βŠ† (𝑋 ↑pm β„‚))
261fvexi 6906 . . . . . 6 𝑍 ∈ V
27 pmresg 8868 . . . . . 6 ((𝑍 ∈ V ∧ 𝐹 ∈ (𝑋 ↑pm β„‚)) β†’ (𝐹 β†Ύ 𝑍) ∈ (𝑋 ↑pm 𝑍))
2826, 12, 27sylancr 585 . . . . 5 (πœ‘ β†’ (𝐹 β†Ύ 𝑍) ∈ (𝑋 ↑pm 𝑍))
2925, 28sseldd 3984 . . . 4 (πœ‘ β†’ (𝐹 β†Ύ 𝑍) ∈ (𝑋 ↑pm β„‚))
3029biantrurd 531 . . 3 (πœ‘ β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom (𝐹 β†Ύ 𝑍) ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯) ↔ ((𝐹 β†Ύ 𝑍) ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom (𝐹 β†Ύ 𝑍) ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯))))
3111, 13, 303bitr3d 308 . 2 (πœ‘ β†’ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯)) ↔ ((𝐹 β†Ύ 𝑍) ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom (𝐹 β†Ύ 𝑍) ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯))))
32 metxmet 24062 . . . 4 (𝐷 ∈ (Metβ€˜π‘‹) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
3314, 32syl 17 . . 3 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
34 caures.3 . . 3 (πœ‘ β†’ 𝑀 ∈ β„€)
35 eqidd 2731 . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) = (πΉβ€˜π‘˜))
36 eqidd 2731 . . 3 ((πœ‘ ∧ 𝑗 ∈ 𝑍) β†’ (πΉβ€˜π‘—) = (πΉβ€˜π‘—))
371, 33, 34, 35, 36iscau4 25029 . 2 (πœ‘ β†’ (𝐹 ∈ (Cauβ€˜π·) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯))))
38 fvres 6911 . . . 4 (π‘˜ ∈ 𝑍 β†’ ((𝐹 β†Ύ 𝑍)β€˜π‘˜) = (πΉβ€˜π‘˜))
3938adantl 480 . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((𝐹 β†Ύ 𝑍)β€˜π‘˜) = (πΉβ€˜π‘˜))
40 fvres 6911 . . . 4 (𝑗 ∈ 𝑍 β†’ ((𝐹 β†Ύ 𝑍)β€˜π‘—) = (πΉβ€˜π‘—))
4140adantl 480 . . 3 ((πœ‘ ∧ 𝑗 ∈ 𝑍) β†’ ((𝐹 β†Ύ 𝑍)β€˜π‘—) = (πΉβ€˜π‘—))
421, 33, 34, 39, 41iscau4 25029 . 2 (πœ‘ β†’ ((𝐹 β†Ύ 𝑍) ∈ (Cauβ€˜π·) ↔ ((𝐹 β†Ύ 𝑍) ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom (𝐹 β†Ύ 𝑍) ∧ (πΉβ€˜π‘˜) ∈ 𝑋 ∧ ((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—)) < π‘₯))))
4331, 37, 423bitr4d 310 1 (πœ‘ β†’ (𝐹 ∈ (Cauβ€˜π·) ↔ (𝐹 β†Ύ 𝑍) ∈ (Cauβ€˜π·)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068  Vcvv 3472   βŠ† wss 3949   class class class wbr 5149  dom cdm 5677   β†Ύ cres 5679  β€˜cfv 6544  (class class class)co 7413   ↑pm cpm 8825  β„‚cc 11112   < clt 11254  β„€cz 12564  β„€β‰₯cuz 12828  β„+crp 12980  βˆžMetcxmet 21131  Metcmet 21132  Cauccau 25003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7979  df-2nd 7980  df-er 8707  df-map 8826  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-2 12281  df-z 12565  df-uz 12829  df-rp 12981  df-xneg 13098  df-xadd 13099  df-psmet 21138  df-xmet 21139  df-met 21140  df-bl 21141  df-cau 25006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator