Proof of Theorem rplogsum
Step | Hyp | Ref
| Expression |
1 | | rpvmasum.z |
. . 3
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
2 | | rpvmasum.l |
. . 3
⊢ 𝐿 = (ℤRHom‘𝑍) |
3 | | rpvmasum.a |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
4 | | rpvmasum.u |
. . 3
⊢ 𝑈 = (Unit‘𝑍) |
5 | | rpvmasum.b |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
6 | | rpvmasum.t |
. . 3
⊢ 𝑇 = (◡𝐿 “ {𝐴}) |
7 | 1, 2, 3, 4, 5, 6 | rpvmasum 26674 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1)) |
8 | 3 | phicld 16473 |
. . . . . . 7
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℕ) |
9 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(ϕ‘𝑁) ∈
ℕ) |
10 | 9 | nncnd 11989 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(ϕ‘𝑁) ∈
ℂ) |
11 | | fzfid 13693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
∈ Fin) |
12 | | inss1 4162 |
. . . . . . . 8
⊢
((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)) |
13 | | ssfi 8956 |
. . . . . . . 8
⊢
(((1...(⌊‘𝑥)) ∈ Fin ∧
((1...(⌊‘𝑥))
∩ 𝑇) ⊆
(1...(⌊‘𝑥)))
→ ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin) |
14 | 11, 12, 13 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((1...(⌊‘𝑥))
∩ 𝑇) ∈
Fin) |
15 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) → 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) |
16 | 15 | elin1d 4132 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) → 𝑝 ∈
(1...(⌊‘𝑥))) |
17 | | elfznn 13285 |
. . . . . . . . 9
⊢ (𝑝 ∈
(1...(⌊‘𝑥))
→ 𝑝 ∈
ℕ) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) → 𝑝 ∈
ℕ) |
19 | | vmacl 26267 |
. . . . . . . . 9
⊢ (𝑝 ∈ ℕ →
(Λ‘𝑝) ∈
ℝ) |
20 | | nndivre 12014 |
. . . . . . . . 9
⊢
(((Λ‘𝑝)
∈ ℝ ∧ 𝑝
∈ ℕ) → ((Λ‘𝑝) / 𝑝) ∈ ℝ) |
21 | 19, 20 | mpancom 685 |
. . . . . . . 8
⊢ (𝑝 ∈ ℕ →
((Λ‘𝑝) / 𝑝) ∈
ℝ) |
22 | 18, 21 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) →
((Λ‘𝑝) / 𝑝) ∈
ℝ) |
23 | 14, 22 | fsumrecl 15446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℝ) |
24 | 23 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℂ) |
25 | 10, 24 | mulcld 10995 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝)) ∈ ℂ) |
26 | | relogcl 25731 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
27 | 26 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℝ) |
28 | 27 | recnd 11003 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℂ) |
29 | 25, 28 | subcld 11332 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ) |
30 | | inss1 4162 |
. . . . . . . 8
⊢
((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥)) |
31 | | ssfi 8956 |
. . . . . . . 8
⊢
(((1...(⌊‘𝑥)) ∈ Fin ∧
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))
⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin) |
32 | 11, 30, 31 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))
∈ Fin) |
33 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))) |
34 | 33 | elin1d 4132 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ 𝑝 ∈
(1...(⌊‘𝑥))) |
35 | 34, 17 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ 𝑝 ∈
ℕ) |
36 | | nnrp 12741 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℕ → 𝑝 ∈
ℝ+) |
37 | 36 | relogcld 25778 |
. . . . . . . . 9
⊢ (𝑝 ∈ ℕ →
(log‘𝑝) ∈
ℝ) |
38 | 37, 36 | rerpdivcld 12803 |
. . . . . . . 8
⊢ (𝑝 ∈ ℕ →
((log‘𝑝) / 𝑝) ∈
ℝ) |
39 | 35, 38 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ ((log‘𝑝) /
𝑝) ∈
ℝ) |
40 | 32, 39 | fsumrecl 15446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℝ) |
41 | 40 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℂ) |
42 | 10, 41 | mulcld 10995 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) ∈ ℂ) |
43 | 42, 28 | subcld 11332 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ) |
44 | 10, 24, 41 | subdid 11431 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((ϕ‘𝑁) ·
(Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))) |
45 | 19 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℕ →
(Λ‘𝑝) ∈
ℂ) |
46 | | 0re 10977 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
47 | | ifcl 4504 |
. . . . . . . . . . . . 13
⊢
(((log‘𝑝)
∈ ℝ ∧ 0 ∈ ℝ) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈
ℝ) |
48 | 37, 46, 47 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ,
(log‘𝑝), 0) ∈
ℝ) |
49 | 48 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ,
(log‘𝑝), 0) ∈
ℂ) |
50 | 36 | rpcnne0d 12781 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℕ → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) |
51 | | divsubdir 11669 |
. . . . . . . . . . 11
⊢
(((Λ‘𝑝)
∈ ℂ ∧ if(𝑝
∈ ℙ, (log‘𝑝), 0) ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) →
(((Λ‘𝑝)
− if(𝑝 ∈
ℙ, (log‘𝑝), 0))
/ 𝑝) =
(((Λ‘𝑝) /
𝑝) − (if(𝑝 ∈ ℙ,
(log‘𝑝), 0) / 𝑝))) |
52 | 45, 49, 50, 51 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℕ →
(((Λ‘𝑝)
− if(𝑝 ∈
ℙ, (log‘𝑝), 0))
/ 𝑝) =
(((Λ‘𝑝) /
𝑝) − (if(𝑝 ∈ ℙ,
(log‘𝑝), 0) / 𝑝))) |
53 | 18, 52 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) →
(((Λ‘𝑝)
− if(𝑝 ∈
ℙ, (log‘𝑝), 0))
/ 𝑝) =
(((Λ‘𝑝) /
𝑝) − (if(𝑝 ∈ ℙ,
(log‘𝑝), 0) / 𝑝))) |
54 | 53 | sumeq2dv 15415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝))) |
55 | 21 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℕ →
((Λ‘𝑝) / 𝑝) ∈
ℂ) |
56 | 18, 55 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) →
((Λ‘𝑝) / 𝑝) ∈
ℂ) |
57 | 48, 36 | rerpdivcld 12803 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ,
(log‘𝑝), 0) / 𝑝) ∈
ℝ) |
58 | 57 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ,
(log‘𝑝), 0) / 𝑝) ∈
ℂ) |
59 | 18, 58 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) → (if(𝑝 ∈ ℙ,
(log‘𝑝), 0) / 𝑝) ∈
ℂ) |
60 | 14, 56, 59 | fsumsub 15500 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝))) |
61 | | inss2 4163 |
. . . . . . . . . . . 12
⊢ (ℙ
∩ 𝑇) ⊆ 𝑇 |
62 | | sslin 4168 |
. . . . . . . . . . . 12
⊢ ((ℙ
∩ 𝑇) ⊆ 𝑇 →
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))
⊆ ((1...(⌊‘𝑥)) ∩ 𝑇)) |
63 | 61, 62 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))
⊆ ((1...(⌊‘𝑥)) ∩ 𝑇)) |
64 | 35, 58 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ (if(𝑝 ∈
ℙ, (log‘𝑝), 0)
/ 𝑝) ∈
ℂ) |
65 | | eldif 3897 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈
(((1...(⌊‘𝑥))
∩ 𝑇) ∖
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
↔ (𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇) ∧ ¬ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))) |
66 | | incom 4135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℙ
∩ 𝑇) = (𝑇 ∩ ℙ) |
67 | 66 | ineq2i 4143 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ)) |
68 | | inass 4153 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ) =
((1...(⌊‘𝑥))
∩ (𝑇 ∩
ℙ)) |
69 | 67, 68 | eqtr4i 2769 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ) |
70 | 69 | elin2 4131 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))
↔ (𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇) ∧ 𝑝 ∈
ℙ)) |
71 | 70 | simplbi2 501 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇) → (𝑝 ∈ ℙ → 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))) |
72 | 71 | con3dimp 409 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇) ∧ ¬ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ ¬ 𝑝 ∈
ℙ) |
73 | 65, 72 | sylbi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈
(((1...(⌊‘𝑥))
∩ 𝑇) ∖
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ ¬ 𝑝 ∈
ℙ) |
74 | 73 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
(((1...(⌊‘𝑥))
∩ 𝑇) ∖
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))))
→ ¬ 𝑝 ∈
ℙ) |
75 | 74 | iffalsed 4470 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
(((1...(⌊‘𝑥))
∩ 𝑇) ∖
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))))
→ if(𝑝 ∈ ℙ,
(log‘𝑝), 0) =
0) |
76 | 75 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
(((1...(⌊‘𝑥))
∩ 𝑇) ∖
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))))
→ (if(𝑝 ∈
ℙ, (log‘𝑝), 0)
/ 𝑝) = (0 / 𝑝)) |
77 | | eldifi 4061 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈
(((1...(⌊‘𝑥))
∩ 𝑇) ∖
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) |
78 | 77, 18 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
(((1...(⌊‘𝑥))
∩ 𝑇) ∖
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))))
→ 𝑝 ∈
ℕ) |
79 | | div0 11663 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (0 / 𝑝) = 0) |
80 | 50, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℕ → (0 /
𝑝) = 0) |
81 | 78, 80 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
(((1...(⌊‘𝑥))
∩ 𝑇) ∖
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))))
→ (0 / 𝑝) =
0) |
82 | 76, 81 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
(((1...(⌊‘𝑥))
∩ 𝑇) ∖
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))))
→ (if(𝑝 ∈
ℙ, (log‘𝑝), 0)
/ 𝑝) = 0) |
83 | 63, 64, 82, 14 | fsumss 15437 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) |
84 | | inss2 4163 |
. . . . . . . . . . . . . . 15
⊢
((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇) |
85 | | inss1 4162 |
. . . . . . . . . . . . . . 15
⊢ (ℙ
∩ 𝑇) ⊆
ℙ |
86 | 84, 85 | sstri 3930 |
. . . . . . . . . . . . . 14
⊢
((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ℙ |
87 | 86, 33 | sselid 3919 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ 𝑝 ∈
ℙ) |
88 | 87 | iftrued 4467 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ if(𝑝 ∈ ℙ,
(log‘𝑝), 0) =
(log‘𝑝)) |
89 | 88 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇)))
→ (if(𝑝 ∈
ℙ, (log‘𝑝), 0)
/ 𝑝) = ((log‘𝑝) / 𝑝)) |
90 | 89 | sumeq2dv 15415 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) |
91 | 83, 90 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(if(𝑝 ∈ ℙ,
(log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) |
92 | 91 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))) |
93 | 54, 60, 92 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))) |
94 | 93 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))) |
95 | 25, 42, 28 | nnncan2d 11367 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((((ϕ‘𝑁)
· Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))) |
96 | 44, 94, 95 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))) |
97 | 96 | mpteq2dva 5174 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) = (𝑥 ∈ ℝ+ ↦
((((ϕ‘𝑁)
· Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))))) |
98 | 19, 48 | resubcld 11403 |
. . . . . . . . 9
⊢ (𝑝 ∈ ℕ →
((Λ‘𝑝) −
if(𝑝 ∈ ℙ,
(log‘𝑝), 0)) ∈
ℝ) |
99 | 98, 36 | rerpdivcld 12803 |
. . . . . . . 8
⊢ (𝑝 ∈ ℕ →
(((Λ‘𝑝)
− if(𝑝 ∈
ℙ, (log‘𝑝), 0))
/ 𝑝) ∈
ℝ) |
100 | 18, 99 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) →
(((Λ‘𝑝)
− if(𝑝 ∈
ℙ, (log‘𝑝), 0))
/ 𝑝) ∈
ℝ) |
101 | 14, 100 | fsumrecl 15446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ) |
102 | 101 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℂ) |
103 | | rpssre 12737 |
. . . . . 6
⊢
ℝ+ ⊆ ℝ |
104 | 8 | nncnd 11989 |
. . . . . 6
⊢ (𝜑 → (ϕ‘𝑁) ∈
ℂ) |
105 | | o1const 15329 |
. . . . . 6
⊢
((ℝ+ ⊆ ℝ ∧ (ϕ‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+
↦ (ϕ‘𝑁))
∈ 𝑂(1)) |
106 | 103, 104,
105 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(ϕ‘𝑁)) ∈
𝑂(1)) |
107 | 103 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ+
⊆ ℝ) |
108 | | 1red 10976 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
109 | | 2re 12047 |
. . . . . . 7
⊢ 2 ∈
ℝ |
110 | 109 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℝ) |
111 | | breq1 5077 |
. . . . . . . . . . . . . 14
⊢
((log‘𝑝) =
if(𝑝 ∈ ℙ,
(log‘𝑝), 0) →
((log‘𝑝) ≤
(Λ‘𝑝) ↔
if(𝑝 ∈ ℙ,
(log‘𝑝), 0) ≤
(Λ‘𝑝))) |
112 | | breq1 5077 |
. . . . . . . . . . . . . 14
⊢ (0 =
if(𝑝 ∈ ℙ,
(log‘𝑝), 0) → (0
≤ (Λ‘𝑝)
↔ if(𝑝 ∈ ℙ,
(log‘𝑝), 0) ≤
(Λ‘𝑝))) |
113 | 37 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) →
(log‘𝑝) ∈
ℝ) |
114 | | vmaprm 26266 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ℙ →
(Λ‘𝑝) =
(log‘𝑝)) |
115 | 114 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) →
(Λ‘𝑝) =
(log‘𝑝)) |
116 | 115 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) →
(log‘𝑝) =
(Λ‘𝑝)) |
117 | 113, 116 | eqled 11078 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) →
(log‘𝑝) ≤
(Λ‘𝑝)) |
118 | | vmage0 26270 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ℕ → 0 ≤
(Λ‘𝑝)) |
119 | 118 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℕ ∧ ¬
𝑝 ∈ ℙ) → 0
≤ (Λ‘𝑝)) |
120 | 111, 112,
117, 119 | ifbothda 4497 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ,
(log‘𝑝), 0) ≤
(Λ‘𝑝)) |
121 | 19, 48 | subge0d 11565 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℕ → (0 ≤
((Λ‘𝑝) −
if(𝑝 ∈ ℙ,
(log‘𝑝), 0)) ↔
if(𝑝 ∈ ℙ,
(log‘𝑝), 0) ≤
(Λ‘𝑝))) |
122 | 120, 121 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ℕ → 0 ≤
((Λ‘𝑝) −
if(𝑝 ∈ ℙ,
(log‘𝑝),
0))) |
123 | 98, 36, 122 | divge0d 12812 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℕ → 0 ≤
(((Λ‘𝑝)
− if(𝑝 ∈
ℙ, (log‘𝑝), 0))
/ 𝑝)) |
124 | 18, 123 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)) → 0 ≤
(((Λ‘𝑝)
− if(𝑝 ∈
ℙ, (log‘𝑝), 0))
/ 𝑝)) |
125 | 14, 100, 124 | fsumge0 15507 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 ≤
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) |
126 | 101, 125 | absidd 15134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) |
127 | 17 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
(1...(⌊‘𝑥)))
→ 𝑝 ∈
ℕ) |
128 | 127, 99 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑝)
− if(𝑝 ∈
ℙ, (log‘𝑝), 0))
/ 𝑝) ∈
ℝ) |
129 | 11, 128 | fsumrecl 15446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
(1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ) |
130 | 109 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℝ) |
131 | 127, 123 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑝 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) |
132 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((1...(⌊‘𝑥))
∩ 𝑇) ⊆
(1...(⌊‘𝑥))) |
133 | 11, 128, 131, 132 | fsumless 15508 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) |
134 | 107 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
135 | 134 | flcld 13518 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(⌊‘𝑥) ∈
ℤ) |
136 | | rplogsumlem2 26633 |
. . . . . . . . . 10
⊢
((⌊‘𝑥)
∈ ℤ → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2) |
137 | 135, 136 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
(1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2) |
138 | 101, 129,
130, 133, 137 | letrd 11132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2) |
139 | 126, 138 | eqbrtrd 5096 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2) |
140 | 139 | adantrr 714 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2) |
141 | 107, 102,
108, 110, 140 | elo1d 15245 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ∈ 𝑂(1)) |
142 | 10, 102, 106, 141 | o1mul2 15334 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) ∈ 𝑂(1)) |
143 | 97, 142 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((((ϕ‘𝑁)
· Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))) ∈ 𝑂(1)) |
144 | 29, 43, 143 | o1dif 15339 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℝ+ ↦
(((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+
↦ (((ϕ‘𝑁)
· Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))) |
145 | 7, 144 | mpbid 231 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(((ϕ‘𝑁) ·
Σ𝑝 ∈
((1...(⌊‘𝑥))
∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1)) |