MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsum Structured version   Visualization version   GIF version

Theorem rplogsum 27019
Description: The sum of log𝑝 / 𝑝 over the primes 𝑝≑𝐴 (mod 𝑁) is asymptotic to logπ‘₯ / Ο•(π‘₯) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (β„€/nβ„€β€˜π‘)
rpvmasum.l 𝐿 = (β„€RHomβ€˜π‘)
rpvmasum.a (πœ‘ β†’ 𝑁 ∈ β„•)
rpvmasum.u π‘ˆ = (Unitβ€˜π‘)
rpvmasum.b (πœ‘ β†’ 𝐴 ∈ π‘ˆ)
rpvmasum.t 𝑇 = (◑𝐿 β€œ {𝐴})
Assertion
Ref Expression
rplogsum (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯))) ∈ 𝑂(1))
Distinct variable groups:   π‘₯,𝑝,𝐴   𝑁,𝑝,π‘₯   πœ‘,𝑝,π‘₯   𝑇,𝑝,π‘₯   π‘ˆ,𝑝,π‘₯   𝑍,𝑝,π‘₯   𝐿,𝑝,π‘₯

Proof of Theorem rplogsum
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (β„€/nβ„€β€˜π‘)
2 rpvmasum.l . . 3 𝐿 = (β„€RHomβ€˜π‘)
3 rpvmasum.a . . 3 (πœ‘ β†’ 𝑁 ∈ β„•)
4 rpvmasum.u . . 3 π‘ˆ = (Unitβ€˜π‘)
5 rpvmasum.b . . 3 (πœ‘ β†’ 𝐴 ∈ π‘ˆ)
6 rpvmasum.t . . 3 𝑇 = (◑𝐿 β€œ {𝐴})
71, 2, 3, 4, 5, 6rpvmasum 27018 . 2 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯))) ∈ 𝑂(1))
83phicld 16701 . . . . . . 7 (πœ‘ β†’ (Ο•β€˜π‘) ∈ β„•)
98adantr 481 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Ο•β€˜π‘) ∈ β„•)
109nncnd 12224 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Ο•β€˜π‘) ∈ β„‚)
11 fzfid 13934 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (1...(βŒŠβ€˜π‘₯)) ∈ Fin)
12 inss1 4227 . . . . . . . 8 ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βŠ† (1...(βŒŠβ€˜π‘₯))
13 ssfi 9169 . . . . . . . 8 (((1...(βŒŠβ€˜π‘₯)) ∈ Fin ∧ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βŠ† (1...(βŒŠβ€˜π‘₯))) β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) ∈ Fin)
1411, 12, 13sylancl 586 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) ∈ Fin)
15 simpr 485 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)) β†’ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇))
1615elin1d 4197 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)) β†’ 𝑝 ∈ (1...(βŒŠβ€˜π‘₯)))
17 elfznn 13526 . . . . . . . . 9 (𝑝 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑝 ∈ β„•)
1816, 17syl 17 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)) β†’ 𝑝 ∈ β„•)
19 vmacl 26611 . . . . . . . . 9 (𝑝 ∈ β„• β†’ (Ξ›β€˜π‘) ∈ ℝ)
20 nndivre 12249 . . . . . . . . 9 (((Ξ›β€˜π‘) ∈ ℝ ∧ 𝑝 ∈ β„•) β†’ ((Ξ›β€˜π‘) / 𝑝) ∈ ℝ)
2119, 20mpancom 686 . . . . . . . 8 (𝑝 ∈ β„• β†’ ((Ξ›β€˜π‘) / 𝑝) ∈ ℝ)
2218, 21syl 17 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)) β†’ ((Ξ›β€˜π‘) / 𝑝) ∈ ℝ)
2314, 22fsumrecl 15676 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝) ∈ ℝ)
2423recnd 11238 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝) ∈ β„‚)
2510, 24mulcld 11230 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) ∈ β„‚)
26 relogcl 26075 . . . . . 6 (π‘₯ ∈ ℝ+ β†’ (logβ€˜π‘₯) ∈ ℝ)
2726adantl 482 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (logβ€˜π‘₯) ∈ ℝ)
2827recnd 11238 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (logβ€˜π‘₯) ∈ β„‚)
2925, 28subcld 11567 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯)) ∈ β„‚)
30 inss1 4227 . . . . . . . 8 ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) βŠ† (1...(βŒŠβ€˜π‘₯))
31 ssfi 9169 . . . . . . . 8 (((1...(βŒŠβ€˜π‘₯)) ∈ Fin ∧ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) βŠ† (1...(βŒŠβ€˜π‘₯))) β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) ∈ Fin)
3211, 30, 31sylancl 586 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) ∈ Fin)
33 simpr 485 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)))
3433elin1d 4197 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ 𝑝 ∈ (1...(βŒŠβ€˜π‘₯)))
3534, 17syl 17 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ 𝑝 ∈ β„•)
36 nnrp 12981 . . . . . . . . . 10 (𝑝 ∈ β„• β†’ 𝑝 ∈ ℝ+)
3736relogcld 26122 . . . . . . . . 9 (𝑝 ∈ β„• β†’ (logβ€˜π‘) ∈ ℝ)
3837, 36rerpdivcld 13043 . . . . . . . 8 (𝑝 ∈ β„• β†’ ((logβ€˜π‘) / 𝑝) ∈ ℝ)
3935, 38syl 17 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ ((logβ€˜π‘) / 𝑝) ∈ ℝ)
4032, 39fsumrecl 15676 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝) ∈ ℝ)
4140recnd 11238 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝) ∈ β„‚)
4210, 41mulcld 11230 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)) ∈ β„‚)
4342, 28subcld 11567 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯)) ∈ β„‚)
4410, 24, 41subdid 11666 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((Ο•β€˜π‘) Β· (Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝) βˆ’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝))) = (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) βˆ’ ((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝))))
4519recnd 11238 . . . . . . . . . . 11 (𝑝 ∈ β„• β†’ (Ξ›β€˜π‘) ∈ β„‚)
46 0re 11212 . . . . . . . . . . . . 13 0 ∈ ℝ
47 ifcl 4572 . . . . . . . . . . . . 13 (((logβ€˜π‘) ∈ ℝ ∧ 0 ∈ ℝ) β†’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) ∈ ℝ)
4837, 46, 47sylancl 586 . . . . . . . . . . . 12 (𝑝 ∈ β„• β†’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) ∈ ℝ)
4948recnd 11238 . . . . . . . . . . 11 (𝑝 ∈ β„• β†’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) ∈ β„‚)
5036rpcnne0d 13021 . . . . . . . . . . 11 (𝑝 ∈ β„• β†’ (𝑝 ∈ β„‚ ∧ 𝑝 β‰  0))
51 divsubdir 11904 . . . . . . . . . . 11 (((Ξ›β€˜π‘) ∈ β„‚ ∧ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) ∈ β„‚ ∧ (𝑝 ∈ β„‚ ∧ 𝑝 β‰  0)) β†’ (((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) = (((Ξ›β€˜π‘) / 𝑝) βˆ’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝)))
5245, 49, 50, 51syl3anc 1371 . . . . . . . . . 10 (𝑝 ∈ β„• β†’ (((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) = (((Ξ›β€˜π‘) / 𝑝) βˆ’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝)))
5318, 52syl 17 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)) β†’ (((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) = (((Ξ›β€˜π‘) / 𝑝) βˆ’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝)))
5453sumeq2dv 15645 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) = Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) / 𝑝) βˆ’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝)))
5521recnd 11238 . . . . . . . . . 10 (𝑝 ∈ β„• β†’ ((Ξ›β€˜π‘) / 𝑝) ∈ β„‚)
5618, 55syl 17 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)) β†’ ((Ξ›β€˜π‘) / 𝑝) ∈ β„‚)
5748, 36rerpdivcld 13043 . . . . . . . . . . 11 (𝑝 ∈ β„• β†’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) ∈ ℝ)
5857recnd 11238 . . . . . . . . . 10 (𝑝 ∈ β„• β†’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) ∈ β„‚)
5918, 58syl 17 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)) β†’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) ∈ β„‚)
6014, 56, 59fsumsub 15730 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) / 𝑝) βˆ’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝) βˆ’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝)))
61 inss2 4228 . . . . . . . . . . . 12 (β„™ ∩ 𝑇) βŠ† 𝑇
62 sslin 4233 . . . . . . . . . . . 12 ((β„™ ∩ 𝑇) βŠ† 𝑇 β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) βŠ† ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇))
6361, 62mp1i 13 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) βŠ† ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇))
6435, 58syl 17 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) ∈ β„‚)
65 eldif 3957 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βˆ– ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) ↔ (𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) ∧ Β¬ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))))
66 incom 4200 . . . . . . . . . . . . . . . . . . . . 21 (β„™ ∩ 𝑇) = (𝑇 ∩ β„™)
6766ineq2i 4208 . . . . . . . . . . . . . . . . . . . 20 ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) = ((1...(βŒŠβ€˜π‘₯)) ∩ (𝑇 ∩ β„™))
68 inass 4218 . . . . . . . . . . . . . . . . . . . 20 (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) ∩ β„™) = ((1...(βŒŠβ€˜π‘₯)) ∩ (𝑇 ∩ β„™))
6967, 68eqtr4i 2763 . . . . . . . . . . . . . . . . . . 19 ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) = (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) ∩ β„™)
7069elin2 4196 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) ↔ (𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) ∧ 𝑝 ∈ β„™))
7170simplbi2 501 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) β†’ (𝑝 ∈ β„™ β†’ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))))
7271con3dimp 409 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) ∧ Β¬ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ Β¬ 𝑝 ∈ β„™)
7365, 72sylbi 216 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βˆ– ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ Β¬ 𝑝 ∈ β„™)
7473adantl 482 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βˆ– ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)))) β†’ Β¬ 𝑝 ∈ β„™)
7574iffalsed 4538 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βˆ– ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)))) β†’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) = 0)
7675oveq1d 7420 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βˆ– ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)))) β†’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) = (0 / 𝑝))
77 eldifi 4125 . . . . . . . . . . . . . 14 (𝑝 ∈ (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βˆ– ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇))
7877, 18sylan2 593 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βˆ– ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)))) β†’ 𝑝 ∈ β„•)
79 div0 11898 . . . . . . . . . . . . . 14 ((𝑝 ∈ β„‚ ∧ 𝑝 β‰  0) β†’ (0 / 𝑝) = 0)
8050, 79syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ β„• β†’ (0 / 𝑝) = 0)
8178, 80syl 17 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βˆ– ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)))) β†’ (0 / 𝑝) = 0)
8276, 81eqtrd 2772 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ (((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βˆ– ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)))) β†’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) = 0)
8363, 64, 82, 14fsumss 15667 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))(if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) = Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝))
84 inss2 4228 . . . . . . . . . . . . . . 15 ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) βŠ† (β„™ ∩ 𝑇)
85 inss1 4227 . . . . . . . . . . . . . . 15 (β„™ ∩ 𝑇) βŠ† β„™
8684, 85sstri 3990 . . . . . . . . . . . . . 14 ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇)) βŠ† β„™
8786, 33sselid 3979 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ 𝑝 ∈ β„™)
8887iftrued 4535 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) = (logβ€˜π‘))
8988oveq1d 7420 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))) β†’ (if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) = ((logβ€˜π‘) / 𝑝))
9089sumeq2dv 15645 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))(if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) = Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝))
9183, 90eqtr3d 2774 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝) = Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝))
9291oveq2d 7421 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝) βˆ’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(if(𝑝 ∈ β„™, (logβ€˜π‘), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝) βˆ’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)))
9354, 60, 923eqtrd 2776 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) = (Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝) βˆ’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)))
9493oveq2d 7421 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝)) = ((Ο•β€˜π‘) Β· (Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝) βˆ’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝))))
9525, 42, 28nnncan2d 11602 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯)) βˆ’ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯))) = (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) βˆ’ ((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝))))
9644, 94, 953eqtr4d 2782 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝)) = ((((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯)) βˆ’ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯))))
9796mpteq2dva 5247 . . . 4 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ ((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝))) = (π‘₯ ∈ ℝ+ ↦ ((((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯)) βˆ’ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯)))))
9819, 48resubcld 11638 . . . . . . . . 9 (𝑝 ∈ β„• β†’ ((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) ∈ ℝ)
9998, 36rerpdivcld 13043 . . . . . . . 8 (𝑝 ∈ β„• β†’ (((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ∈ ℝ)
10018, 99syl 17 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)) β†’ (((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ∈ ℝ)
10114, 100fsumrecl 15676 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ∈ ℝ)
102101recnd 11238 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ∈ β„‚)
103 rpssre 12977 . . . . . 6 ℝ+ βŠ† ℝ
1048nncnd 12224 . . . . . 6 (πœ‘ β†’ (Ο•β€˜π‘) ∈ β„‚)
105 o1const 15560 . . . . . 6 ((ℝ+ βŠ† ℝ ∧ (Ο•β€˜π‘) ∈ β„‚) β†’ (π‘₯ ∈ ℝ+ ↦ (Ο•β€˜π‘)) ∈ 𝑂(1))
106103, 104, 105sylancr 587 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (Ο•β€˜π‘)) ∈ 𝑂(1))
107103a1i 11 . . . . . 6 (πœ‘ β†’ ℝ+ βŠ† ℝ)
108 1red 11211 . . . . . 6 (πœ‘ β†’ 1 ∈ ℝ)
109 2re 12282 . . . . . . 7 2 ∈ ℝ
110109a1i 11 . . . . . 6 (πœ‘ β†’ 2 ∈ ℝ)
111 breq1 5150 . . . . . . . . . . . . . 14 ((logβ€˜π‘) = if(𝑝 ∈ β„™, (logβ€˜π‘), 0) β†’ ((logβ€˜π‘) ≀ (Ξ›β€˜π‘) ↔ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) ≀ (Ξ›β€˜π‘)))
112 breq1 5150 . . . . . . . . . . . . . 14 (0 = if(𝑝 ∈ β„™, (logβ€˜π‘), 0) β†’ (0 ≀ (Ξ›β€˜π‘) ↔ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) ≀ (Ξ›β€˜π‘)))
11337adantr 481 . . . . . . . . . . . . . . 15 ((𝑝 ∈ β„• ∧ 𝑝 ∈ β„™) β†’ (logβ€˜π‘) ∈ ℝ)
114 vmaprm 26610 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ β„™ β†’ (Ξ›β€˜π‘) = (logβ€˜π‘))
115114adantl 482 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ β„• ∧ 𝑝 ∈ β„™) β†’ (Ξ›β€˜π‘) = (logβ€˜π‘))
116115eqcomd 2738 . . . . . . . . . . . . . . 15 ((𝑝 ∈ β„• ∧ 𝑝 ∈ β„™) β†’ (logβ€˜π‘) = (Ξ›β€˜π‘))
117113, 116eqled 11313 . . . . . . . . . . . . . 14 ((𝑝 ∈ β„• ∧ 𝑝 ∈ β„™) β†’ (logβ€˜π‘) ≀ (Ξ›β€˜π‘))
118 vmage0 26614 . . . . . . . . . . . . . . 15 (𝑝 ∈ β„• β†’ 0 ≀ (Ξ›β€˜π‘))
119118adantr 481 . . . . . . . . . . . . . 14 ((𝑝 ∈ β„• ∧ Β¬ 𝑝 ∈ β„™) β†’ 0 ≀ (Ξ›β€˜π‘))
120111, 112, 117, 119ifbothda 4565 . . . . . . . . . . . . 13 (𝑝 ∈ β„• β†’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) ≀ (Ξ›β€˜π‘))
12119, 48subge0d 11800 . . . . . . . . . . . . 13 (𝑝 ∈ β„• β†’ (0 ≀ ((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) ↔ if(𝑝 ∈ β„™, (logβ€˜π‘), 0) ≀ (Ξ›β€˜π‘)))
122120, 121mpbird 256 . . . . . . . . . . . 12 (𝑝 ∈ β„• β†’ 0 ≀ ((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)))
12398, 36, 122divge0d 13052 . . . . . . . . . . 11 (𝑝 ∈ β„• β†’ 0 ≀ (((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝))
12418, 123syl 17 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)) β†’ 0 ≀ (((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝))
12514, 100, 124fsumge0 15737 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ 0 ≀ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝))
126101, 125absidd 15365 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘ ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝)) = Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝))
12717adantl 482 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑝 ∈ β„•)
128127, 99syl 17 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ∈ ℝ)
12911, 128fsumrecl 15676 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ∈ ℝ)
130109a1i 11 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ 2 ∈ ℝ)
131127, 123syl 17 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑝 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝))
13212a1i 11 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇) βŠ† (1...(βŒŠβ€˜π‘₯)))
13311, 128, 131, 132fsumless 15738 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ≀ Σ𝑝 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝))
134107sselda 3981 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ π‘₯ ∈ ℝ)
135134flcld 13759 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (βŒŠβ€˜π‘₯) ∈ β„€)
136 rplogsumlem2 26977 . . . . . . . . . 10 ((βŒŠβ€˜π‘₯) ∈ β„€ β†’ Σ𝑝 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ≀ 2)
137135, 136syl 17 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ≀ 2)
138101, 129, 130, 133, 137letrd 11367 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝) ≀ 2)
139126, 138eqbrtrd 5169 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘ ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝)) ≀ 2)
140139adantrr 715 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (absβ€˜Ξ£π‘ ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝)) ≀ 2)
141107, 102, 108, 110, 140elo1d 15476 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝)) ∈ 𝑂(1))
14210, 102, 106, 141o1mul2 15565 . . . 4 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ ((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)(((Ξ›β€˜π‘) βˆ’ if(𝑝 ∈ β„™, (logβ€˜π‘), 0)) / 𝑝))) ∈ 𝑂(1))
14397, 142eqeltrrd 2834 . . 3 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ ((((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯)) βˆ’ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯)))) ∈ 𝑂(1))
14429, 43, 143o1dif 15570 . 2 (πœ‘ β†’ ((π‘₯ ∈ ℝ+ ↦ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ 𝑇)((Ξ›β€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯))) ∈ 𝑂(1) ↔ (π‘₯ ∈ ℝ+ ↦ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯))) ∈ 𝑂(1)))
1457, 144mpbid 231 1 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (((Ο•β€˜π‘) Β· Σ𝑝 ∈ ((1...(βŒŠβ€˜π‘₯)) ∩ (β„™ ∩ 𝑇))((logβ€˜π‘) / 𝑝)) βˆ’ (logβ€˜π‘₯))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   βˆ– cdif 3944   ∩ cin 3946   βŠ† wss 3947  ifcif 4527  {csn 4627   class class class wbr 5147   ↦ cmpt 5230  β—‘ccnv 5674   β€œ cima 5678  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   Β· cmul 11111   ≀ cle 11245   βˆ’ cmin 11440   / cdiv 11867  β„•cn 12208  2c2 12263  β„€cz 12554  β„+crp 12970  ...cfz 13480  βŒŠcfl 13751  abscabs 15177  π‘‚(1)co1 15426  Ξ£csu 15628  β„™cprime 16604  Ο•cphi 16693  Unitcui 20161  β„€RHomczrh 21040  β„€/nβ„€czn 21043  logclog 26054  Ξ›cvma 26585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-rpss 7709  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-o1 15430  df-lo1 15431  df-sum 15629  df-ef 16007  df-e 16008  df-sin 16009  df-cos 16010  df-tan 16011  df-pi 16012  df-dvds 16194  df-gcd 16432  df-prm 16605  df-numer 16667  df-denom 16668  df-phi 16695  df-pc 16766  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-qus 17451  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-nsg 18998  df-eqg 18999  df-ghm 19084  df-gim 19127  df-ga 19148  df-cntz 19175  df-oppg 19204  df-od 19390  df-gex 19391  df-pgp 19392  df-lsm 19498  df-pj1 19499  df-cmn 19644  df-abl 19645  df-cyg 19740  df-dprd 19859  df-dpj 19860  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-rnghom 20243  df-drng 20309  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-sra 20777  df-rgmod 20778  df-lidl 20779  df-rsp 20780  df-2idl 20849  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-zring 21010  df-zrh 21044  df-zn 21047  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-cmp 22882  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-xms 23817  df-ms 23818  df-tms 23819  df-cncf 24385  df-0p 25178  df-limc 25374  df-dv 25375  df-ply 25693  df-idp 25694  df-coe 25695  df-dgr 25696  df-quot 25795  df-ulm 25880  df-log 26056  df-cxp 26057  df-atan 26361  df-em 26486  df-cht 26590  df-vma 26591  df-chp 26592  df-ppi 26593  df-mu 26594  df-dchr 26725
This theorem is referenced by:  dirith2  27020
  Copyright terms: Public domain W3C validator