MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsum Structured version   Visualization version   GIF version

Theorem rplogsum 27458
Description: The sum of log𝑝 / 𝑝 over the primes 𝑝𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
rplogsum (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑝,𝐴   𝑁,𝑝,𝑥   𝜑,𝑝,𝑥   𝑇,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝐿,𝑝,𝑥

Proof of Theorem rplogsum
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.u . . 3 𝑈 = (Unit‘𝑍)
5 rpvmasum.b . . 3 (𝜑𝐴𝑈)
6 rpvmasum.t . . 3 𝑇 = (𝐿 “ {𝐴})
71, 2, 3, 4, 5, 6rpvmasum 27457 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
83phicld 16675 . . . . . . 7 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
98adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
109nncnd 12133 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
11 fzfid 13872 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
12 inss1 4185 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
13 ssfi 9077 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1411, 12, 13sylancl 586 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
15 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
1615elin1d 4152 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ (1...(⌊‘𝑥)))
17 elfznn 13445 . . . . . . . . 9 (𝑝 ∈ (1...(⌊‘𝑥)) → 𝑝 ∈ ℕ)
1816, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ℕ)
19 vmacl 27048 . . . . . . . . 9 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℝ)
20 nndivre 12158 . . . . . . . . 9 (((Λ‘𝑝) ∈ ℝ ∧ 𝑝 ∈ ℕ) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2119, 20mpancom 688 . . . . . . . 8 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2218, 21syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2314, 22fsumrecl 15633 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℝ)
2423recnd 11132 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℂ)
2510, 24mulcld 11124 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) ∈ ℂ)
26 relogcl 26504 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2726adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2827recnd 11132 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2925, 28subcld 11464 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
30 inss1 4185 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))
31 ssfi 9077 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
3211, 30, 31sylancl 586 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
33 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))
3433elin1d 4152 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ (1...(⌊‘𝑥)))
3534, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℕ)
36 nnrp 12894 . . . . . . . . . 10 (𝑝 ∈ ℕ → 𝑝 ∈ ℝ+)
3736relogcld 26552 . . . . . . . . 9 (𝑝 ∈ ℕ → (log‘𝑝) ∈ ℝ)
3837, 36rerpdivcld 12957 . . . . . . . 8 (𝑝 ∈ ℕ → ((log‘𝑝) / 𝑝) ∈ ℝ)
3935, 38syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ((log‘𝑝) / 𝑝) ∈ ℝ)
4032, 39fsumrecl 15633 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℝ)
4140recnd 11132 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℂ)
4210, 41mulcld 11124 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) ∈ ℂ)
4342, 28subcld 11464 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
4410, 24, 41subdid 11565 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
4519recnd 11132 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℂ)
46 0re 11106 . . . . . . . . . . . . 13 0 ∈ ℝ
47 ifcl 4519 . . . . . . . . . . . . 13 (((log‘𝑝) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4837, 46, 47sylancl 586 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4948recnd 11132 . . . . . . . . . . 11 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ)
5036rpcnne0d 12935 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
51 divsubdir 11807 . . . . . . . . . . 11 (((Λ‘𝑝) ∈ ℂ ∧ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5245, 49, 50, 51syl3anc 1373 . . . . . . . . . 10 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5318, 52syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5453sumeq2dv 15601 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5521recnd 11132 . . . . . . . . . 10 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5618, 55syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5748, 36rerpdivcld 12957 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℝ)
5857recnd 11132 . . . . . . . . . 10 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
5918, 58syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
6014, 56, 59fsumsub 15687 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
61 inss2 4186 . . . . . . . . . . . 12 (ℙ ∩ 𝑇) ⊆ 𝑇
62 sslin 4191 . . . . . . . . . . . 12 ((ℙ ∩ 𝑇) ⊆ 𝑇 → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6361, 62mp1i 13 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6435, 58syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
65 eldif 3910 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
66 incom 4157 . . . . . . . . . . . . . . . . . . . . 21 (ℙ ∩ 𝑇) = (𝑇 ∩ ℙ)
6766ineq2i 4165 . . . . . . . . . . . . . . . . . . . 20 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
68 inass 4176 . . . . . . . . . . . . . . . . . . . 20 (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
6967, 68eqtr4i 2756 . . . . . . . . . . . . . . . . . . 19 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ)
7069elin2 4151 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ 𝑝 ∈ ℙ))
7170simplbi2 500 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) → (𝑝 ∈ ℙ → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
7271con3dimp 408 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7365, 72sylbi 217 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7473adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → ¬ 𝑝 ∈ ℙ)
7574iffalsed 4484 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = 0)
7675oveq1d 7356 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = (0 / 𝑝))
77 eldifi 4079 . . . . . . . . . . . . . 14 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
7877, 18sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → 𝑝 ∈ ℕ)
79 div0 11801 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (0 / 𝑝) = 0)
8050, 79syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 / 𝑝) = 0)
8178, 80syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (0 / 𝑝) = 0)
8276, 81eqtrd 2765 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = 0)
8363, 64, 82, 14fsumss 15624 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝))
84 inss2 4186 . . . . . . . . . . . . . . 15 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇)
85 inss1 4185 . . . . . . . . . . . . . . 15 (ℙ ∩ 𝑇) ⊆ ℙ
8684, 85sstri 3942 . . . . . . . . . . . . . 14 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ℙ
8786, 33sselid 3930 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℙ)
8887iftrued 4481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = (log‘𝑝))
8988oveq1d 7356 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = ((log‘𝑝) / 𝑝))
9089sumeq2dv 15601 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9183, 90eqtr3d 2767 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9291oveq2d 7357 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9354, 60, 923eqtrd 2769 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9493oveq2d 7357 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9525, 42, 28nnncan2d 11499 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9644, 94, 953eqtr4d 2775 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))))
9796mpteq2dva 5182 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) = (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))))
9819, 48resubcld 11537 . . . . . . . . 9 (𝑝 ∈ ℕ → ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ∈ ℝ)
9998, 36rerpdivcld 12957 . . . . . . . 8 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10018, 99syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10114, 100fsumrecl 15633 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
102101recnd 11132 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℂ)
103 rpssre 12890 . . . . . 6 + ⊆ ℝ
1048nncnd 12133 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
105 o1const 15519 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (ϕ‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
106103, 104, 105sylancr 587 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
107103a1i 11 . . . . . 6 (𝜑 → ℝ+ ⊆ ℝ)
108 1red 11105 . . . . . 6 (𝜑 → 1 ∈ ℝ)
109 2re 12191 . . . . . . 7 2 ∈ ℝ
110109a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
111 breq1 5092 . . . . . . . . . . . . . 14 ((log‘𝑝) = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → ((log‘𝑝) ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
112 breq1 5092 . . . . . . . . . . . . . 14 (0 = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → (0 ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
11337adantr 480 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
114 vmaprm 27047 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → (Λ‘𝑝) = (log‘𝑝))
115114adantl 481 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (Λ‘𝑝) = (log‘𝑝))
116115eqcomd 2736 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) = (Λ‘𝑝))
117113, 116eqled 11208 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ≤ (Λ‘𝑝))
118 vmage0 27051 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℕ → 0 ≤ (Λ‘𝑝))
119118adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ ¬ 𝑝 ∈ ℙ) → 0 ≤ (Λ‘𝑝))
120111, 112, 117, 119ifbothda 4512 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝))
12119, 48subge0d 11699 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
122120, 121mpbird 257 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → 0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)))
12398, 36, 122divge0d 12966 . . . . . . . . . . 11 (𝑝 ∈ ℕ → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12418, 123syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12514, 100, 124fsumge0 15694 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
126101, 125absidd 15322 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12717adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 𝑝 ∈ ℕ)
128127, 99syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
12911, 128fsumrecl 15633 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
130109a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℝ)
131127, 123syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
13212a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
13311, 128, 131, 132fsumless 15695 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
134107sselda 3932 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
135134flcld 13694 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℤ)
136 rplogsumlem2 27416 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℤ → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
137135, 136syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
138101, 129, 130, 133, 137letrd 11262 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
139126, 138eqbrtrd 5111 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
140139adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
141107, 102, 108, 110, 140elo1d 15435 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ∈ 𝑂(1))
14210, 102, 106, 141o1mul2 15524 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) ∈ 𝑂(1))
14397, 142eqeltrrd 2830 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))) ∈ 𝑂(1))
14429, 43, 143o1dif 15529 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1)))
1457, 144mpbid 232 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  cdif 3897  cin 3899  wss 3900  ifcif 4473  {csn 4574   class class class wbr 5089  cmpt 5170  ccnv 5613  cima 5617  cfv 6477  (class class class)co 7341  Fincfn 8864  cc 10996  cr 10997  0cc0 10998  1c1 10999   · cmul 11003  cle 11139  cmin 11336   / cdiv 11766  cn 12117  2c2 12172  cz 12460  +crp 12882  ...cfz 13399  cfl 13686  abscabs 15133  𝑂(1)co1 15385  Σcsu 15585  cprime 16574  ϕcphi 16667  Unitcui 20266  ℤRHomczrh 21429  ℤ/nczn 21432  logclog 26483  Λcvma 27022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-o1 15389  df-lo1 15390  df-sum 15586  df-ef 15966  df-e 15967  df-sin 15968  df-cos 15969  df-tan 15970  df-pi 15971  df-dvds 16156  df-gcd 16398  df-prm 16575  df-numer 16638  df-denom 16639  df-phi 16669  df-pc 16741  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-qus 17405  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-nsg 19029  df-eqg 19030  df-ghm 19118  df-gim 19164  df-ga 19195  df-cntz 19222  df-oppg 19251  df-od 19433  df-gex 19434  df-pgp 19435  df-lsm 19541  df-pj1 19542  df-cmn 19687  df-abl 19688  df-cyg 19783  df-dprd 19902  df-dpj 19903  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-zring 21377  df-zrh 21433  df-zn 21436  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-cmp 23295  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-0p 25591  df-limc 25787  df-dv 25788  df-ply 26113  df-idp 26114  df-coe 26115  df-dgr 26116  df-quot 26219  df-ulm 26306  df-log 26485  df-cxp 26486  df-atan 26797  df-em 26923  df-cht 27027  df-vma 27028  df-chp 27029  df-ppi 27030  df-mu 27031  df-dchr 27164
This theorem is referenced by:  dirith2  27459
  Copyright terms: Public domain W3C validator