MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsum Structured version   Visualization version   GIF version

Theorem rplogsum 27475
Description: The sum of log𝑝 / 𝑝 over the primes 𝑝𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
rplogsum (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑝,𝐴   𝑁,𝑝,𝑥   𝜑,𝑝,𝑥   𝑇,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝐿,𝑝,𝑥

Proof of Theorem rplogsum
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.u . . 3 𝑈 = (Unit‘𝑍)
5 rpvmasum.b . . 3 (𝜑𝐴𝑈)
6 rpvmasum.t . . 3 𝑇 = (𝐿 “ {𝐴})
71, 2, 3, 4, 5, 6rpvmasum 27474 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
83phicld 16693 . . . . . . 7 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
98adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
109nncnd 12151 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
11 fzfid 13890 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
12 inss1 4188 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
13 ssfi 9092 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1411, 12, 13sylancl 586 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
15 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
1615elin1d 4155 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ (1...(⌊‘𝑥)))
17 elfznn 13463 . . . . . . . . 9 (𝑝 ∈ (1...(⌊‘𝑥)) → 𝑝 ∈ ℕ)
1816, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ℕ)
19 vmacl 27065 . . . . . . . . 9 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℝ)
20 nndivre 12176 . . . . . . . . 9 (((Λ‘𝑝) ∈ ℝ ∧ 𝑝 ∈ ℕ) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2119, 20mpancom 688 . . . . . . . 8 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2218, 21syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2314, 22fsumrecl 15651 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℝ)
2423recnd 11150 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℂ)
2510, 24mulcld 11142 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) ∈ ℂ)
26 relogcl 26521 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2726adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2827recnd 11150 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2925, 28subcld 11482 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
30 inss1 4188 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))
31 ssfi 9092 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
3211, 30, 31sylancl 586 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
33 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))
3433elin1d 4155 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ (1...(⌊‘𝑥)))
3534, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℕ)
36 nnrp 12912 . . . . . . . . . 10 (𝑝 ∈ ℕ → 𝑝 ∈ ℝ+)
3736relogcld 26569 . . . . . . . . 9 (𝑝 ∈ ℕ → (log‘𝑝) ∈ ℝ)
3837, 36rerpdivcld 12975 . . . . . . . 8 (𝑝 ∈ ℕ → ((log‘𝑝) / 𝑝) ∈ ℝ)
3935, 38syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ((log‘𝑝) / 𝑝) ∈ ℝ)
4032, 39fsumrecl 15651 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℝ)
4140recnd 11150 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℂ)
4210, 41mulcld 11142 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) ∈ ℂ)
4342, 28subcld 11482 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
4410, 24, 41subdid 11583 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
4519recnd 11150 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℂ)
46 0re 11124 . . . . . . . . . . . . 13 0 ∈ ℝ
47 ifcl 4522 . . . . . . . . . . . . 13 (((log‘𝑝) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4837, 46, 47sylancl 586 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4948recnd 11150 . . . . . . . . . . 11 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ)
5036rpcnne0d 12953 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
51 divsubdir 11825 . . . . . . . . . . 11 (((Λ‘𝑝) ∈ ℂ ∧ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5245, 49, 50, 51syl3anc 1373 . . . . . . . . . 10 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5318, 52syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5453sumeq2dv 15619 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5521recnd 11150 . . . . . . . . . 10 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5618, 55syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5748, 36rerpdivcld 12975 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℝ)
5857recnd 11150 . . . . . . . . . 10 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
5918, 58syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
6014, 56, 59fsumsub 15705 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
61 inss2 4189 . . . . . . . . . . . 12 (ℙ ∩ 𝑇) ⊆ 𝑇
62 sslin 4194 . . . . . . . . . . . 12 ((ℙ ∩ 𝑇) ⊆ 𝑇 → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6361, 62mp1i 13 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6435, 58syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
65 eldif 3909 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
66 incom 4160 . . . . . . . . . . . . . . . . . . . . 21 (ℙ ∩ 𝑇) = (𝑇 ∩ ℙ)
6766ineq2i 4168 . . . . . . . . . . . . . . . . . . . 20 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
68 inass 4179 . . . . . . . . . . . . . . . . . . . 20 (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
6967, 68eqtr4i 2759 . . . . . . . . . . . . . . . . . . 19 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ)
7069elin2 4154 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ 𝑝 ∈ ℙ))
7170simplbi2 500 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) → (𝑝 ∈ ℙ → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
7271con3dimp 408 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7365, 72sylbi 217 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7473adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → ¬ 𝑝 ∈ ℙ)
7574iffalsed 4487 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = 0)
7675oveq1d 7370 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = (0 / 𝑝))
77 eldifi 4082 . . . . . . . . . . . . . 14 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
7877, 18sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → 𝑝 ∈ ℕ)
79 div0 11819 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (0 / 𝑝) = 0)
8050, 79syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 / 𝑝) = 0)
8178, 80syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (0 / 𝑝) = 0)
8276, 81eqtrd 2768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = 0)
8363, 64, 82, 14fsumss 15642 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝))
84 inss2 4189 . . . . . . . . . . . . . . 15 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇)
85 inss1 4188 . . . . . . . . . . . . . . 15 (ℙ ∩ 𝑇) ⊆ ℙ
8684, 85sstri 3941 . . . . . . . . . . . . . 14 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ℙ
8786, 33sselid 3929 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℙ)
8887iftrued 4484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = (log‘𝑝))
8988oveq1d 7370 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = ((log‘𝑝) / 𝑝))
9089sumeq2dv 15619 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9183, 90eqtr3d 2770 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9291oveq2d 7371 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9354, 60, 923eqtrd 2772 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9493oveq2d 7371 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9525, 42, 28nnncan2d 11517 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9644, 94, 953eqtr4d 2778 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))))
9796mpteq2dva 5188 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) = (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))))
9819, 48resubcld 11555 . . . . . . . . 9 (𝑝 ∈ ℕ → ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ∈ ℝ)
9998, 36rerpdivcld 12975 . . . . . . . 8 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10018, 99syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10114, 100fsumrecl 15651 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
102101recnd 11150 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℂ)
103 rpssre 12908 . . . . . 6 + ⊆ ℝ
1048nncnd 12151 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
105 o1const 15537 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (ϕ‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
106103, 104, 105sylancr 587 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
107103a1i 11 . . . . . 6 (𝜑 → ℝ+ ⊆ ℝ)
108 1red 11123 . . . . . 6 (𝜑 → 1 ∈ ℝ)
109 2re 12209 . . . . . . 7 2 ∈ ℝ
110109a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
111 breq1 5098 . . . . . . . . . . . . . 14 ((log‘𝑝) = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → ((log‘𝑝) ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
112 breq1 5098 . . . . . . . . . . . . . 14 (0 = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → (0 ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
11337adantr 480 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
114 vmaprm 27064 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → (Λ‘𝑝) = (log‘𝑝))
115114adantl 481 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (Λ‘𝑝) = (log‘𝑝))
116115eqcomd 2739 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) = (Λ‘𝑝))
117113, 116eqled 11226 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ≤ (Λ‘𝑝))
118 vmage0 27068 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℕ → 0 ≤ (Λ‘𝑝))
119118adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ ¬ 𝑝 ∈ ℙ) → 0 ≤ (Λ‘𝑝))
120111, 112, 117, 119ifbothda 4515 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝))
12119, 48subge0d 11717 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
122120, 121mpbird 257 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → 0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)))
12398, 36, 122divge0d 12984 . . . . . . . . . . 11 (𝑝 ∈ ℕ → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12418, 123syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12514, 100, 124fsumge0 15712 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
126101, 125absidd 15340 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12717adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 𝑝 ∈ ℕ)
128127, 99syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
12911, 128fsumrecl 15651 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
130109a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℝ)
131127, 123syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
13212a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
13311, 128, 131, 132fsumless 15713 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
134107sselda 3931 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
135134flcld 13712 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℤ)
136 rplogsumlem2 27433 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℤ → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
137135, 136syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
138101, 129, 130, 133, 137letrd 11280 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
139126, 138eqbrtrd 5117 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
140139adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
141107, 102, 108, 110, 140elo1d 15453 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ∈ 𝑂(1))
14210, 102, 106, 141o1mul2 15542 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) ∈ 𝑂(1))
14397, 142eqeltrrd 2834 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))) ∈ 𝑂(1))
14429, 43, 143o1dif 15547 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1)))
1457, 144mpbid 232 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930  cdif 3896  cin 3898  wss 3899  ifcif 4476  {csn 4577   class class class wbr 5095  cmpt 5176  ccnv 5620  cima 5624  cfv 6489  (class class class)co 7355  Fincfn 8878  cc 11014  cr 11015  0cc0 11016  1c1 11017   · cmul 11021  cle 11157  cmin 11354   / cdiv 11784  cn 12135  2c2 12190  cz 12478  +crp 12900  ...cfz 13417  cfl 13704  abscabs 15151  𝑂(1)co1 15403  Σcsu 15603  cprime 16592  ϕcphi 16685  Unitcui 20283  ℤRHomczrh 21446  ℤ/nczn 21449  logclog 26500  Λcvma 27039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-rpss 7665  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-dju 9804  df-card 9842  df-acn 9845  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-xnn0 12465  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-o1 15407  df-lo1 15408  df-sum 15604  df-ef 15984  df-e 15985  df-sin 15986  df-cos 15987  df-tan 15988  df-pi 15989  df-dvds 16174  df-gcd 16416  df-prm 16593  df-numer 16656  df-denom 16657  df-phi 16687  df-pc 16759  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-qus 17423  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-nsg 19047  df-eqg 19048  df-ghm 19135  df-gim 19181  df-ga 19212  df-cntz 19239  df-oppg 19268  df-od 19450  df-gex 19451  df-pgp 19452  df-lsm 19558  df-pj1 19559  df-cmn 19704  df-abl 19705  df-cyg 19800  df-dprd 19919  df-dpj 19920  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-rhm 20400  df-subrng 20471  df-subrg 20495  df-drng 20656  df-lmod 20805  df-lss 20875  df-lsp 20915  df-sra 21117  df-rgmod 21118  df-lidl 21155  df-rsp 21156  df-2idl 21197  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-zring 21394  df-zrh 21450  df-zn 21453  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-cmp 23312  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-0p 25608  df-limc 25804  df-dv 25805  df-ply 26130  df-idp 26131  df-coe 26132  df-dgr 26133  df-quot 26236  df-ulm 26323  df-log 26502  df-cxp 26503  df-atan 26814  df-em 26940  df-cht 27044  df-vma 27045  df-chp 27046  df-ppi 27047  df-mu 27048  df-dchr 27181
This theorem is referenced by:  dirith2  27476
  Copyright terms: Public domain W3C validator