MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsum Structured version   Visualization version   GIF version

Theorem rplogsum 27488
Description: The sum of log𝑝 / 𝑝 over the primes 𝑝𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
rplogsum (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑝,𝐴   𝑁,𝑝,𝑥   𝜑,𝑝,𝑥   𝑇,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝐿,𝑝,𝑥

Proof of Theorem rplogsum
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.u . . 3 𝑈 = (Unit‘𝑍)
5 rpvmasum.b . . 3 (𝜑𝐴𝑈)
6 rpvmasum.t . . 3 𝑇 = (𝐿 “ {𝐴})
71, 2, 3, 4, 5, 6rpvmasum 27487 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
83phicld 16789 . . . . . . 7 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
98adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
109nncnd 12254 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
11 fzfid 13989 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
12 inss1 4212 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
13 ssfi 9185 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1411, 12, 13sylancl 586 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
15 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
1615elin1d 4179 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ (1...(⌊‘𝑥)))
17 elfznn 13568 . . . . . . . . 9 (𝑝 ∈ (1...(⌊‘𝑥)) → 𝑝 ∈ ℕ)
1816, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ℕ)
19 vmacl 27078 . . . . . . . . 9 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℝ)
20 nndivre 12279 . . . . . . . . 9 (((Λ‘𝑝) ∈ ℝ ∧ 𝑝 ∈ ℕ) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2119, 20mpancom 688 . . . . . . . 8 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2218, 21syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2314, 22fsumrecl 15748 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℝ)
2423recnd 11261 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℂ)
2510, 24mulcld 11253 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) ∈ ℂ)
26 relogcl 26534 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2726adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2827recnd 11261 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2925, 28subcld 11592 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
30 inss1 4212 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))
31 ssfi 9185 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
3211, 30, 31sylancl 586 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
33 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))
3433elin1d 4179 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ (1...(⌊‘𝑥)))
3534, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℕ)
36 nnrp 13018 . . . . . . . . . 10 (𝑝 ∈ ℕ → 𝑝 ∈ ℝ+)
3736relogcld 26582 . . . . . . . . 9 (𝑝 ∈ ℕ → (log‘𝑝) ∈ ℝ)
3837, 36rerpdivcld 13080 . . . . . . . 8 (𝑝 ∈ ℕ → ((log‘𝑝) / 𝑝) ∈ ℝ)
3935, 38syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ((log‘𝑝) / 𝑝) ∈ ℝ)
4032, 39fsumrecl 15748 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℝ)
4140recnd 11261 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℂ)
4210, 41mulcld 11253 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) ∈ ℂ)
4342, 28subcld 11592 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
4410, 24, 41subdid 11691 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
4519recnd 11261 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℂ)
46 0re 11235 . . . . . . . . . . . . 13 0 ∈ ℝ
47 ifcl 4546 . . . . . . . . . . . . 13 (((log‘𝑝) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4837, 46, 47sylancl 586 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4948recnd 11261 . . . . . . . . . . 11 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ)
5036rpcnne0d 13058 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
51 divsubdir 11933 . . . . . . . . . . 11 (((Λ‘𝑝) ∈ ℂ ∧ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5245, 49, 50, 51syl3anc 1373 . . . . . . . . . 10 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5318, 52syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5453sumeq2dv 15716 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5521recnd 11261 . . . . . . . . . 10 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5618, 55syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5748, 36rerpdivcld 13080 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℝ)
5857recnd 11261 . . . . . . . . . 10 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
5918, 58syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
6014, 56, 59fsumsub 15802 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
61 inss2 4213 . . . . . . . . . . . 12 (ℙ ∩ 𝑇) ⊆ 𝑇
62 sslin 4218 . . . . . . . . . . . 12 ((ℙ ∩ 𝑇) ⊆ 𝑇 → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6361, 62mp1i 13 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6435, 58syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
65 eldif 3936 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
66 incom 4184 . . . . . . . . . . . . . . . . . . . . 21 (ℙ ∩ 𝑇) = (𝑇 ∩ ℙ)
6766ineq2i 4192 . . . . . . . . . . . . . . . . . . . 20 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
68 inass 4203 . . . . . . . . . . . . . . . . . . . 20 (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
6967, 68eqtr4i 2761 . . . . . . . . . . . . . . . . . . 19 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ)
7069elin2 4178 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ 𝑝 ∈ ℙ))
7170simplbi2 500 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) → (𝑝 ∈ ℙ → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
7271con3dimp 408 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7365, 72sylbi 217 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7473adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → ¬ 𝑝 ∈ ℙ)
7574iffalsed 4511 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = 0)
7675oveq1d 7418 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = (0 / 𝑝))
77 eldifi 4106 . . . . . . . . . . . . . 14 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
7877, 18sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → 𝑝 ∈ ℕ)
79 div0 11927 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (0 / 𝑝) = 0)
8050, 79syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 / 𝑝) = 0)
8178, 80syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (0 / 𝑝) = 0)
8276, 81eqtrd 2770 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = 0)
8363, 64, 82, 14fsumss 15739 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝))
84 inss2 4213 . . . . . . . . . . . . . . 15 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇)
85 inss1 4212 . . . . . . . . . . . . . . 15 (ℙ ∩ 𝑇) ⊆ ℙ
8684, 85sstri 3968 . . . . . . . . . . . . . 14 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ℙ
8786, 33sselid 3956 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℙ)
8887iftrued 4508 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = (log‘𝑝))
8988oveq1d 7418 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = ((log‘𝑝) / 𝑝))
9089sumeq2dv 15716 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9183, 90eqtr3d 2772 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9291oveq2d 7419 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9354, 60, 923eqtrd 2774 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9493oveq2d 7419 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9525, 42, 28nnncan2d 11627 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9644, 94, 953eqtr4d 2780 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))))
9796mpteq2dva 5214 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) = (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))))
9819, 48resubcld 11663 . . . . . . . . 9 (𝑝 ∈ ℕ → ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ∈ ℝ)
9998, 36rerpdivcld 13080 . . . . . . . 8 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10018, 99syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10114, 100fsumrecl 15748 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
102101recnd 11261 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℂ)
103 rpssre 13014 . . . . . 6 + ⊆ ℝ
1048nncnd 12254 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
105 o1const 15634 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (ϕ‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
106103, 104, 105sylancr 587 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
107103a1i 11 . . . . . 6 (𝜑 → ℝ+ ⊆ ℝ)
108 1red 11234 . . . . . 6 (𝜑 → 1 ∈ ℝ)
109 2re 12312 . . . . . . 7 2 ∈ ℝ
110109a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
111 breq1 5122 . . . . . . . . . . . . . 14 ((log‘𝑝) = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → ((log‘𝑝) ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
112 breq1 5122 . . . . . . . . . . . . . 14 (0 = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → (0 ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
11337adantr 480 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
114 vmaprm 27077 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → (Λ‘𝑝) = (log‘𝑝))
115114adantl 481 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (Λ‘𝑝) = (log‘𝑝))
116115eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) = (Λ‘𝑝))
117113, 116eqled 11336 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ≤ (Λ‘𝑝))
118 vmage0 27081 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℕ → 0 ≤ (Λ‘𝑝))
119118adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ ¬ 𝑝 ∈ ℙ) → 0 ≤ (Λ‘𝑝))
120111, 112, 117, 119ifbothda 4539 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝))
12119, 48subge0d 11825 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
122120, 121mpbird 257 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → 0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)))
12398, 36, 122divge0d 13089 . . . . . . . . . . 11 (𝑝 ∈ ℕ → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12418, 123syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12514, 100, 124fsumge0 15809 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
126101, 125absidd 15439 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12717adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 𝑝 ∈ ℕ)
128127, 99syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
12911, 128fsumrecl 15748 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
130109a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℝ)
131127, 123syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
13212a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
13311, 128, 131, 132fsumless 15810 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
134107sselda 3958 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
135134flcld 13813 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℤ)
136 rplogsumlem2 27446 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℤ → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
137135, 136syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
138101, 129, 130, 133, 137letrd 11390 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
139126, 138eqbrtrd 5141 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
140139adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
141107, 102, 108, 110, 140elo1d 15550 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ∈ 𝑂(1))
14210, 102, 106, 141o1mul2 15639 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) ∈ 𝑂(1))
14397, 142eqeltrrd 2835 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))) ∈ 𝑂(1))
14429, 43, 143o1dif 15644 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1)))
1457, 144mpbid 232 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  cin 3925  wss 3926  ifcif 4500  {csn 4601   class class class wbr 5119  cmpt 5201  ccnv 5653  cima 5657  cfv 6530  (class class class)co 7403  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128   · cmul 11132  cle 11268  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  cz 12586  +crp 13006  ...cfz 13522  cfl 13805  abscabs 15251  𝑂(1)co1 15500  Σcsu 15700  cprime 16688  ϕcphi 16781  Unitcui 20313  ℤRHomczrh 21458  ℤ/nczn 21461  logclog 26513  Λcvma 27052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-rpss 7715  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-o1 15504  df-lo1 15505  df-sum 15701  df-ef 16081  df-e 16082  df-sin 16083  df-cos 16084  df-tan 16085  df-pi 16086  df-dvds 16271  df-gcd 16512  df-prm 16689  df-numer 16752  df-denom 16753  df-phi 16783  df-pc 16855  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-qus 17521  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-nsg 19105  df-eqg 19106  df-ghm 19194  df-gim 19240  df-ga 19271  df-cntz 19298  df-oppg 19327  df-od 19507  df-gex 19508  df-pgp 19509  df-lsm 19615  df-pj1 19616  df-cmn 19761  df-abl 19762  df-cyg 19857  df-dprd 19976  df-dpj 19977  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-dvr 20359  df-rhm 20430  df-subrng 20504  df-subrg 20528  df-drng 20689  df-lmod 20817  df-lss 20887  df-lsp 20927  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-2idl 21209  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-zring 21406  df-zrh 21462  df-zn 21465  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-0p 25621  df-limc 25817  df-dv 25818  df-ply 26143  df-idp 26144  df-coe 26145  df-dgr 26146  df-quot 26249  df-ulm 26336  df-log 26515  df-cxp 26516  df-atan 26827  df-em 26953  df-cht 27057  df-vma 27058  df-chp 27059  df-ppi 27060  df-mu 27061  df-dchr 27194
This theorem is referenced by:  dirith2  27489
  Copyright terms: Public domain W3C validator