| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version | ||
| Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval2 13395 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
| 2 | 1 | eleq2d 2820 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
| 3 | breq2 5123 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
| 4 | breq1 5122 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 6 | 5 | elrab 3671 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 7 | 3anass 1094 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
| 9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 ℝ*cxr 11268 < clt 11269 (,)cioo 13362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-ioo 13366 |
| This theorem is referenced by: dfrp2 13411 eliooord 13422 elioopnf 13460 elioomnf 13461 difreicc 13501 xov1plusxeqvd 13515 tanhbnd 16179 bl2ioo 24731 xrtgioo 24746 zcld 24753 iccntr 24761 icccmplem2 24763 reconnlem1 24766 reconnlem2 24767 icoopnst 24887 iocopnst 24888 ivthlem3 25406 ovolicc2lem1 25470 ovolicc2lem5 25474 ioombl1lem4 25514 mbfmax 25602 itg2monolem1 25703 itg2monolem3 25705 dvferm1lem 25940 dvferm2lem 25942 dvlip2 25952 dvivthlem1 25965 lhop1lem 25970 lhop 25973 dvcnvrelem1 25974 dvcnvre 25976 itgsubst 26008 sincosq1sgn 26459 sincosq2sgn 26460 sincosq3sgn 26461 sincosq4sgn 26462 coseq00topi 26463 tanabsge 26467 sinq12gt0 26468 sinq12ge0 26469 cosq14gt0 26471 sincos6thpi 26477 sineq0 26485 cos02pilt1 26487 cosq34lt1 26488 cosordlem 26491 cos0pilt1 26493 tanord1 26498 tanord 26499 argregt0 26571 argimgt0 26573 argimlt0 26574 dvloglem 26609 logf1o2 26611 efopnlem2 26618 asinsinlem 26853 acoscos 26855 atanlogsublem 26877 atantan 26885 atanbndlem 26887 atanbnd 26888 atan1 26890 scvxcvx 26948 basellem1 27043 pntibndlem1 27552 pntibnd 27556 pntlemc 27558 padicabvf 27594 padicabvcxp 27595 cnre2csqlem 33941 ivthALT 36353 iooelexlt 37380 itg2gt0cn 37699 iblabsnclem 37707 dvasin 37728 areacirclem1 37732 areacirc 37737 dvrelog3 42078 0nonelalab 42080 cvgdvgrat 44337 radcnvrat 44338 sineq0ALT 44961 ioogtlb 45524 eliood 45527 eliooshift 45535 iooltub 45539 limciccioolb 45650 limcicciooub 45666 cncfioobdlem 45925 ditgeqiooicc 45989 dirkercncflem1 46132 dirkercncflem4 46135 fourierdlem10 46146 fourierdlem32 46168 fourierdlem62 46197 fourierdlem81 46216 fourierdlem82 46217 fourierdlem93 46228 fourierdlem104 46239 fourierdlem111 46246 |
| Copyright terms: Public domain | W3C validator |