| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version | ||
| Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval2 13339 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
| 3 | breq2 5111 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
| 4 | breq1 5110 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 6 | 5 | elrab 3659 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 7 | 3anass 1094 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
| 9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 ℝ*cxr 11207 < clt 11208 (,)cioo 13306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 |
| This theorem is referenced by: dfrp2 13355 eliooord 13366 elioopnf 13404 elioomnf 13405 difreicc 13445 xov1plusxeqvd 13459 tanhbnd 16129 bl2ioo 24680 xrtgioo 24695 zcld 24702 iccntr 24710 icccmplem2 24712 reconnlem1 24715 reconnlem2 24716 icoopnst 24836 iocopnst 24837 ivthlem3 25354 ovolicc2lem1 25418 ovolicc2lem5 25422 ioombl1lem4 25462 mbfmax 25550 itg2monolem1 25651 itg2monolem3 25653 dvferm1lem 25888 dvferm2lem 25890 dvlip2 25900 dvivthlem1 25913 lhop1lem 25918 lhop 25921 dvcnvrelem1 25922 dvcnvre 25924 itgsubst 25956 sincosq1sgn 26407 sincosq2sgn 26408 sincosq3sgn 26409 sincosq4sgn 26410 coseq00topi 26411 tanabsge 26415 sinq12gt0 26416 sinq12ge0 26417 cosq14gt0 26419 sincos6thpi 26425 sineq0 26433 cos02pilt1 26435 cosq34lt1 26436 cosordlem 26439 cos0pilt1 26441 tanord1 26446 tanord 26447 argregt0 26519 argimgt0 26521 argimlt0 26522 dvloglem 26557 logf1o2 26559 efopnlem2 26566 asinsinlem 26801 acoscos 26803 atanlogsublem 26825 atantan 26833 atanbndlem 26835 atanbnd 26836 atan1 26838 scvxcvx 26896 basellem1 26991 pntibndlem1 27500 pntibnd 27504 pntlemc 27506 padicabvf 27542 padicabvcxp 27543 cnre2csqlem 33900 ivthALT 36323 iooelexlt 37350 itg2gt0cn 37669 iblabsnclem 37677 dvasin 37698 areacirclem1 37702 areacirc 37707 dvrelog3 42053 0nonelalab 42055 cvgdvgrat 44302 radcnvrat 44303 sineq0ALT 44926 ioogtlb 45493 eliood 45496 eliooshift 45504 iooltub 45508 limciccioolb 45619 limcicciooub 45635 cncfioobdlem 45894 ditgeqiooicc 45958 dirkercncflem1 46101 dirkercncflem4 46104 fourierdlem10 46115 fourierdlem32 46137 fourierdlem62 46166 fourierdlem81 46185 fourierdlem82 46186 fourierdlem93 46197 fourierdlem104 46208 fourierdlem111 46215 |
| Copyright terms: Public domain | W3C validator |