Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval2 12802 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
2 | 1 | eleq2d 2838 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
3 | breq2 5034 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
4 | breq1 5033 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
5 | 3, 4 | anbi12d 634 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
6 | 5 | elrab 3603 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
7 | 3anass 1093 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
8 | 6, 7 | bitr4i 281 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
9 | 2, 8 | bitrdi 290 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 {crab 3075 class class class wbr 5030 (class class class)co 7148 ℝcr 10564 ℝ*cxr 10702 < clt 10703 (,)cioo 12769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-pre-lttri 10639 ax-pre-lttrn 10640 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-po 5441 df-so 5442 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7151 df-oprab 7152 df-mpo 7153 df-1st 7691 df-2nd 7692 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-ioo 12773 |
This theorem is referenced by: dfrp2 12818 eliooord 12828 elioopnf 12865 elioomnf 12866 difreicc 12906 xov1plusxeqvd 12920 tanhbnd 15552 bl2ioo 23483 xrtgioo 23497 zcld 23504 iccntr 23512 icccmplem2 23514 reconnlem1 23517 reconnlem2 23518 icoopnst 23630 iocopnst 23631 ivthlem3 24143 ovolicc2lem1 24207 ovolicc2lem5 24211 ioombl1lem4 24251 mbfmax 24339 itg2monolem1 24440 itg2monolem3 24442 dvferm1lem 24673 dvferm2lem 24675 dvlip2 24684 dvivthlem1 24697 lhop1lem 24702 lhop 24705 dvcnvrelem1 24706 dvcnvre 24708 itgsubst 24738 sincosq1sgn 25180 sincosq2sgn 25181 sincosq3sgn 25182 sincosq4sgn 25183 coseq00topi 25184 tanabsge 25188 sinq12gt0 25189 sinq12ge0 25190 cosq14gt0 25192 sincos6thpi 25197 sineq0 25205 cos02pilt1 25207 cosq34lt1 25208 cosordlem 25211 cos0pilt1 25213 tanord1 25218 tanord 25219 argregt0 25290 argimgt0 25292 argimlt0 25293 dvloglem 25328 logf1o2 25330 efopnlem2 25337 asinsinlem 25566 acoscos 25568 atanlogsublem 25590 atantan 25598 atanbndlem 25600 atanbnd 25601 atan1 25603 scvxcvx 25660 basellem1 25755 pntibndlem1 26262 pntibnd 26266 pntlemc 26268 padicabvf 26304 padicabvcxp 26305 cnre2csqlem 31371 ivthALT 34063 iooelexlt 35049 itg2gt0cn 35382 iblabsnclem 35390 dvasin 35411 areacirclem1 35415 areacirc 35420 dvrelog3 39621 0nonelalab 39623 cvgdvgrat 41380 radcnvrat 41381 sineq0ALT 42006 ioogtlb 42488 eliood 42491 eliooshift 42499 iooltub 42503 limciccioolb 42619 limcicciooub 42635 cncfioobdlem 42894 ditgeqiooicc 42958 dirkercncflem1 43101 dirkercncflem4 43104 fourierdlem10 43115 fourierdlem32 43137 fourierdlem62 43166 fourierdlem81 43185 fourierdlem82 43186 fourierdlem93 43197 fourierdlem104 43208 fourierdlem111 43215 |
Copyright terms: Public domain | W3C validator |