![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval2 13440 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
2 | 1 | eleq2d 2830 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
3 | breq2 5170 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
4 | breq1 5169 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
5 | 3, 4 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
6 | 5 | elrab 3708 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
7 | 3anass 1095 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 ℝ*cxr 11323 < clt 11324 (,)cioo 13407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ioo 13411 |
This theorem is referenced by: dfrp2 13456 eliooord 13466 elioopnf 13503 elioomnf 13504 difreicc 13544 xov1plusxeqvd 13558 tanhbnd 16209 bl2ioo 24833 xrtgioo 24847 zcld 24854 iccntr 24862 icccmplem2 24864 reconnlem1 24867 reconnlem2 24868 icoopnst 24988 iocopnst 24989 ivthlem3 25507 ovolicc2lem1 25571 ovolicc2lem5 25575 ioombl1lem4 25615 mbfmax 25703 itg2monolem1 25805 itg2monolem3 25807 dvferm1lem 26042 dvferm2lem 26044 dvlip2 26054 dvivthlem1 26067 lhop1lem 26072 lhop 26075 dvcnvrelem1 26076 dvcnvre 26078 itgsubst 26110 sincosq1sgn 26558 sincosq2sgn 26559 sincosq3sgn 26560 sincosq4sgn 26561 coseq00topi 26562 tanabsge 26566 sinq12gt0 26567 sinq12ge0 26568 cosq14gt0 26570 sincos6thpi 26576 sineq0 26584 cos02pilt1 26586 cosq34lt1 26587 cosordlem 26590 cos0pilt1 26592 tanord1 26597 tanord 26598 argregt0 26670 argimgt0 26672 argimlt0 26673 dvloglem 26708 logf1o2 26710 efopnlem2 26717 asinsinlem 26952 acoscos 26954 atanlogsublem 26976 atantan 26984 atanbndlem 26986 atanbnd 26987 atan1 26989 scvxcvx 27047 basellem1 27142 pntibndlem1 27651 pntibnd 27655 pntlemc 27657 padicabvf 27693 padicabvcxp 27694 cnre2csqlem 33856 ivthALT 36301 iooelexlt 37328 itg2gt0cn 37635 iblabsnclem 37643 dvasin 37664 areacirclem1 37668 areacirc 37673 dvrelog3 42022 0nonelalab 42024 cvgdvgrat 44282 radcnvrat 44283 sineq0ALT 44908 ioogtlb 45413 eliood 45416 eliooshift 45424 iooltub 45428 limciccioolb 45542 limcicciooub 45558 cncfioobdlem 45817 ditgeqiooicc 45881 dirkercncflem1 46024 dirkercncflem4 46027 fourierdlem10 46038 fourierdlem32 46060 fourierdlem62 46089 fourierdlem81 46108 fourierdlem82 46109 fourierdlem93 46120 fourierdlem104 46131 fourierdlem111 46138 |
Copyright terms: Public domain | W3C validator |