![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval2 13389 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
2 | 1 | eleq2d 2811 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
3 | breq2 5152 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
4 | breq1 5151 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
6 | 5 | elrab 3680 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
7 | 3anass 1092 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
9 | 2, 8 | bitrdi 286 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3419 class class class wbr 5148 (class class class)co 7417 ℝcr 11137 ℝ*cxr 11277 < clt 11278 (,)cioo 13356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-1st 7992 df-2nd 7993 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-ioo 13360 |
This theorem is referenced by: dfrp2 13405 eliooord 13415 elioopnf 13452 elioomnf 13453 difreicc 13493 xov1plusxeqvd 13507 tanhbnd 16138 bl2ioo 24739 xrtgioo 24753 zcld 24760 iccntr 24768 icccmplem2 24770 reconnlem1 24773 reconnlem2 24774 icoopnst 24894 iocopnst 24895 ivthlem3 25413 ovolicc2lem1 25477 ovolicc2lem5 25481 ioombl1lem4 25521 mbfmax 25609 itg2monolem1 25711 itg2monolem3 25713 dvferm1lem 25947 dvferm2lem 25949 dvlip2 25959 dvivthlem1 25972 lhop1lem 25977 lhop 25980 dvcnvrelem1 25981 dvcnvre 25983 itgsubst 26015 sincosq1sgn 26464 sincosq2sgn 26465 sincosq3sgn 26466 sincosq4sgn 26467 coseq00topi 26468 tanabsge 26472 sinq12gt0 26473 sinq12ge0 26474 cosq14gt0 26476 sincos6thpi 26481 sineq0 26489 cos02pilt1 26491 cosq34lt1 26492 cosordlem 26495 cos0pilt1 26497 tanord1 26502 tanord 26503 argregt0 26575 argimgt0 26577 argimlt0 26578 dvloglem 26613 logf1o2 26615 efopnlem2 26622 asinsinlem 26854 acoscos 26856 atanlogsublem 26878 atantan 26886 atanbndlem 26888 atanbnd 26889 atan1 26891 scvxcvx 26949 basellem1 27044 pntibndlem1 27553 pntibnd 27557 pntlemc 27559 padicabvf 27595 padicabvcxp 27596 cnre2csqlem 33598 ivthALT 35906 iooelexlt 36928 itg2gt0cn 37235 iblabsnclem 37243 dvasin 37264 areacirclem1 37268 areacirc 37273 dvrelog3 41622 0nonelalab 41624 cvgdvgrat 43832 radcnvrat 43833 sineq0ALT 44458 ioogtlb 44960 eliood 44963 eliooshift 44971 iooltub 44975 limciccioolb 45089 limcicciooub 45105 cncfioobdlem 45364 ditgeqiooicc 45428 dirkercncflem1 45571 dirkercncflem4 45574 fourierdlem10 45585 fourierdlem32 45607 fourierdlem62 45636 fourierdlem81 45655 fourierdlem82 45656 fourierdlem93 45667 fourierdlem104 45678 fourierdlem111 45685 |
Copyright terms: Public domain | W3C validator |