| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version | ||
| Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval2 13288 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
| 3 | breq2 5099 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
| 4 | breq1 5098 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 6 | 5 | elrab 3644 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 7 | 3anass 1094 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
| 9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3397 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 ℝ*cxr 11155 < clt 11156 (,)cioo 13255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-pre-lttri 11090 ax-pre-lttrn 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-ioo 13259 |
| This theorem is referenced by: dfrp2 13304 eliooord 13315 elioopnf 13353 elioomnf 13354 difreicc 13394 xov1plusxeqvd 13408 tanhbnd 16080 bl2ioo 24717 xrtgioo 24732 zcld 24739 iccntr 24747 icccmplem2 24749 reconnlem1 24752 reconnlem2 24753 icoopnst 24873 iocopnst 24874 ivthlem3 25391 ovolicc2lem1 25455 ovolicc2lem5 25459 ioombl1lem4 25499 mbfmax 25587 itg2monolem1 25688 itg2monolem3 25690 dvferm1lem 25925 dvferm2lem 25927 dvlip2 25937 dvivthlem1 25950 lhop1lem 25955 lhop 25958 dvcnvrelem1 25959 dvcnvre 25961 itgsubst 25993 sincosq1sgn 26444 sincosq2sgn 26445 sincosq3sgn 26446 sincosq4sgn 26447 coseq00topi 26448 tanabsge 26452 sinq12gt0 26453 sinq12ge0 26454 cosq14gt0 26456 sincos6thpi 26462 sineq0 26470 cos02pilt1 26472 cosq34lt1 26473 cosordlem 26476 cos0pilt1 26478 tanord1 26483 tanord 26484 argregt0 26556 argimgt0 26558 argimlt0 26559 dvloglem 26594 logf1o2 26596 efopnlem2 26603 asinsinlem 26838 acoscos 26840 atanlogsublem 26862 atantan 26870 atanbndlem 26872 atanbnd 26873 atan1 26875 scvxcvx 26933 basellem1 27028 pntibndlem1 27537 pntibnd 27541 pntlemc 27543 padicabvf 27579 padicabvcxp 27580 cnre2csqlem 33934 ivthALT 36390 iooelexlt 37417 itg2gt0cn 37725 iblabsnclem 37733 dvasin 37754 areacirclem1 37758 areacirc 37763 dvrelog3 42168 0nonelalab 42170 cvgdvgrat 44420 radcnvrat 44421 sineq0ALT 45043 ioogtlb 45609 eliood 45612 eliooshift 45620 iooltub 45624 limciccioolb 45735 limcicciooub 45749 cncfioobdlem 46008 ditgeqiooicc 46072 dirkercncflem1 46215 dirkercncflem4 46218 fourierdlem10 46229 fourierdlem32 46251 fourierdlem62 46280 fourierdlem81 46299 fourierdlem82 46300 fourierdlem93 46311 fourierdlem104 46322 fourierdlem111 46329 |
| Copyright terms: Public domain | W3C validator |