Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval2 13162 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
2 | 1 | eleq2d 2822 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
3 | breq2 5085 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
4 | breq1 5084 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
6 | 5 | elrab 3629 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
7 | 3anass 1095 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 {crab 3303 class class class wbr 5081 (class class class)co 7307 ℝcr 10920 ℝ*cxr 11058 < clt 11059 (,)cioo 13129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-pre-lttri 10995 ax-pre-lttrn 10996 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-ioo 13133 |
This theorem is referenced by: dfrp2 13178 eliooord 13188 elioopnf 13225 elioomnf 13226 difreicc 13266 xov1plusxeqvd 13280 tanhbnd 15919 bl2ioo 24004 xrtgioo 24018 zcld 24025 iccntr 24033 icccmplem2 24035 reconnlem1 24038 reconnlem2 24039 icoopnst 24151 iocopnst 24152 ivthlem3 24666 ovolicc2lem1 24730 ovolicc2lem5 24734 ioombl1lem4 24774 mbfmax 24862 itg2monolem1 24964 itg2monolem3 24966 dvferm1lem 25197 dvferm2lem 25199 dvlip2 25208 dvivthlem1 25221 lhop1lem 25226 lhop 25229 dvcnvrelem1 25230 dvcnvre 25232 itgsubst 25262 sincosq1sgn 25704 sincosq2sgn 25705 sincosq3sgn 25706 sincosq4sgn 25707 coseq00topi 25708 tanabsge 25712 sinq12gt0 25713 sinq12ge0 25714 cosq14gt0 25716 sincos6thpi 25721 sineq0 25729 cos02pilt1 25731 cosq34lt1 25732 cosordlem 25735 cos0pilt1 25737 tanord1 25742 tanord 25743 argregt0 25814 argimgt0 25816 argimlt0 25817 dvloglem 25852 logf1o2 25854 efopnlem2 25861 asinsinlem 26090 acoscos 26092 atanlogsublem 26114 atantan 26122 atanbndlem 26124 atanbnd 26125 atan1 26127 scvxcvx 26184 basellem1 26279 pntibndlem1 26786 pntibnd 26790 pntlemc 26792 padicabvf 26828 padicabvcxp 26829 cnre2csqlem 31909 ivthALT 34573 iooelexlt 35581 itg2gt0cn 35880 iblabsnclem 35888 dvasin 35909 areacirclem1 35913 areacirc 35918 dvrelog3 40273 0nonelalab 40275 cvgdvgrat 42144 radcnvrat 42145 sineq0ALT 42770 ioogtlb 43262 eliood 43265 eliooshift 43273 iooltub 43277 limciccioolb 43391 limcicciooub 43407 cncfioobdlem 43666 ditgeqiooicc 43730 dirkercncflem1 43873 dirkercncflem4 43876 fourierdlem10 43887 fourierdlem32 43909 fourierdlem62 43938 fourierdlem81 43957 fourierdlem82 43958 fourierdlem93 43969 fourierdlem104 43980 fourierdlem111 43987 |
Copyright terms: Public domain | W3C validator |