![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval2 13416 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
3 | breq2 5151 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
4 | breq1 5150 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
6 | 5 | elrab 3694 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
7 | 3anass 1094 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 {crab 3432 class class class wbr 5147 (class class class)co 7430 ℝcr 11151 ℝ*cxr 11291 < clt 11292 (,)cioo 13383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-ioo 13387 |
This theorem is referenced by: dfrp2 13432 eliooord 13442 elioopnf 13479 elioomnf 13480 difreicc 13520 xov1plusxeqvd 13534 tanhbnd 16193 bl2ioo 24827 xrtgioo 24841 zcld 24848 iccntr 24856 icccmplem2 24858 reconnlem1 24861 reconnlem2 24862 icoopnst 24982 iocopnst 24983 ivthlem3 25501 ovolicc2lem1 25565 ovolicc2lem5 25569 ioombl1lem4 25609 mbfmax 25697 itg2monolem1 25799 itg2monolem3 25801 dvferm1lem 26036 dvferm2lem 26038 dvlip2 26048 dvivthlem1 26061 lhop1lem 26066 lhop 26069 dvcnvrelem1 26070 dvcnvre 26072 itgsubst 26104 sincosq1sgn 26554 sincosq2sgn 26555 sincosq3sgn 26556 sincosq4sgn 26557 coseq00topi 26558 tanabsge 26562 sinq12gt0 26563 sinq12ge0 26564 cosq14gt0 26566 sincos6thpi 26572 sineq0 26580 cos02pilt1 26582 cosq34lt1 26583 cosordlem 26586 cos0pilt1 26588 tanord1 26593 tanord 26594 argregt0 26666 argimgt0 26668 argimlt0 26669 dvloglem 26704 logf1o2 26706 efopnlem2 26713 asinsinlem 26948 acoscos 26950 atanlogsublem 26972 atantan 26980 atanbndlem 26982 atanbnd 26983 atan1 26985 scvxcvx 27043 basellem1 27138 pntibndlem1 27647 pntibnd 27651 pntlemc 27653 padicabvf 27689 padicabvcxp 27690 cnre2csqlem 33870 ivthALT 36317 iooelexlt 37344 itg2gt0cn 37661 iblabsnclem 37669 dvasin 37690 areacirclem1 37694 areacirc 37699 dvrelog3 42046 0nonelalab 42048 cvgdvgrat 44308 radcnvrat 44309 sineq0ALT 44934 ioogtlb 45447 eliood 45450 eliooshift 45458 iooltub 45462 limciccioolb 45576 limcicciooub 45592 cncfioobdlem 45851 ditgeqiooicc 45915 dirkercncflem1 46058 dirkercncflem4 46061 fourierdlem10 46072 fourierdlem32 46094 fourierdlem62 46123 fourierdlem81 46142 fourierdlem82 46143 fourierdlem93 46154 fourierdlem104 46165 fourierdlem111 46172 |
Copyright terms: Public domain | W3C validator |