![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval2 13381 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
2 | 1 | eleq2d 2814 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
3 | breq2 5146 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
4 | breq1 5145 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
6 | 5 | elrab 3680 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
7 | 3anass 1093 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
9 | 2, 8 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {crab 3427 class class class wbr 5142 (class class class)co 7414 ℝcr 11129 ℝ*cxr 11269 < clt 11270 (,)cioo 13348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-pre-lttri 11204 ax-pre-lttrn 11205 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-ioo 13352 |
This theorem is referenced by: dfrp2 13397 eliooord 13407 elioopnf 13444 elioomnf 13445 difreicc 13485 xov1plusxeqvd 13499 tanhbnd 16129 bl2ioo 24695 xrtgioo 24709 zcld 24716 iccntr 24724 icccmplem2 24726 reconnlem1 24729 reconnlem2 24730 icoopnst 24850 iocopnst 24851 ivthlem3 25369 ovolicc2lem1 25433 ovolicc2lem5 25437 ioombl1lem4 25477 mbfmax 25565 itg2monolem1 25667 itg2monolem3 25669 dvferm1lem 25903 dvferm2lem 25905 dvlip2 25915 dvivthlem1 25928 lhop1lem 25933 lhop 25936 dvcnvrelem1 25937 dvcnvre 25939 itgsubst 25971 sincosq1sgn 26420 sincosq2sgn 26421 sincosq3sgn 26422 sincosq4sgn 26423 coseq00topi 26424 tanabsge 26428 sinq12gt0 26429 sinq12ge0 26430 cosq14gt0 26432 sincos6thpi 26437 sineq0 26445 cos02pilt1 26447 cosq34lt1 26448 cosordlem 26451 cos0pilt1 26453 tanord1 26458 tanord 26459 argregt0 26531 argimgt0 26533 argimlt0 26534 dvloglem 26569 logf1o2 26571 efopnlem2 26578 asinsinlem 26810 acoscos 26812 atanlogsublem 26834 atantan 26842 atanbndlem 26844 atanbnd 26845 atan1 26847 scvxcvx 26905 basellem1 27000 pntibndlem1 27509 pntibnd 27513 pntlemc 27515 padicabvf 27551 padicabvcxp 27552 cnre2csqlem 33447 ivthALT 35755 iooelexlt 36777 itg2gt0cn 37083 iblabsnclem 37091 dvasin 37112 areacirclem1 37116 areacirc 37121 dvrelog3 41473 0nonelalab 41475 cvgdvgrat 43673 radcnvrat 43674 sineq0ALT 44299 ioogtlb 44803 eliood 44806 eliooshift 44814 iooltub 44818 limciccioolb 44932 limcicciooub 44948 cncfioobdlem 45207 ditgeqiooicc 45271 dirkercncflem1 45414 dirkercncflem4 45417 fourierdlem10 45428 fourierdlem32 45450 fourierdlem62 45479 fourierdlem81 45498 fourierdlem82 45499 fourierdlem93 45510 fourierdlem104 45521 fourierdlem111 45528 |
Copyright terms: Public domain | W3C validator |