Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval2 13094 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
2 | 1 | eleq2d 2825 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
3 | breq2 5082 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
4 | breq1 5081 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
6 | 5 | elrab 3625 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
7 | 3anass 1093 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
9 | 2, 8 | bitrdi 286 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {crab 3069 class class class wbr 5078 (class class class)co 7268 ℝcr 10854 ℝ*cxr 10992 < clt 10993 (,)cioo 13061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-ioo 13065 |
This theorem is referenced by: dfrp2 13110 eliooord 13120 elioopnf 13157 elioomnf 13158 difreicc 13198 xov1plusxeqvd 13212 tanhbnd 15851 bl2ioo 23936 xrtgioo 23950 zcld 23957 iccntr 23965 icccmplem2 23967 reconnlem1 23970 reconnlem2 23971 icoopnst 24083 iocopnst 24084 ivthlem3 24598 ovolicc2lem1 24662 ovolicc2lem5 24666 ioombl1lem4 24706 mbfmax 24794 itg2monolem1 24896 itg2monolem3 24898 dvferm1lem 25129 dvferm2lem 25131 dvlip2 25140 dvivthlem1 25153 lhop1lem 25158 lhop 25161 dvcnvrelem1 25162 dvcnvre 25164 itgsubst 25194 sincosq1sgn 25636 sincosq2sgn 25637 sincosq3sgn 25638 sincosq4sgn 25639 coseq00topi 25640 tanabsge 25644 sinq12gt0 25645 sinq12ge0 25646 cosq14gt0 25648 sincos6thpi 25653 sineq0 25661 cos02pilt1 25663 cosq34lt1 25664 cosordlem 25667 cos0pilt1 25669 tanord1 25674 tanord 25675 argregt0 25746 argimgt0 25748 argimlt0 25749 dvloglem 25784 logf1o2 25786 efopnlem2 25793 asinsinlem 26022 acoscos 26024 atanlogsublem 26046 atantan 26054 atanbndlem 26056 atanbnd 26057 atan1 26059 scvxcvx 26116 basellem1 26211 pntibndlem1 26718 pntibnd 26722 pntlemc 26724 padicabvf 26760 padicabvcxp 26761 cnre2csqlem 31839 ivthALT 34503 iooelexlt 35512 itg2gt0cn 35811 iblabsnclem 35819 dvasin 35840 areacirclem1 35844 areacirc 35849 dvrelog3 40053 0nonelalab 40055 cvgdvgrat 41884 radcnvrat 41885 sineq0ALT 42510 ioogtlb 42987 eliood 42990 eliooshift 42998 iooltub 43002 limciccioolb 43116 limcicciooub 43132 cncfioobdlem 43391 ditgeqiooicc 43455 dirkercncflem1 43598 dirkercncflem4 43601 fourierdlem10 43612 fourierdlem32 43634 fourierdlem62 43663 fourierdlem81 43682 fourierdlem82 43683 fourierdlem93 43694 fourierdlem104 43705 fourierdlem111 43712 |
Copyright terms: Public domain | W3C validator |