![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliooxr | Structured version Visualization version GIF version |
Description: A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.) |
Ref | Expression |
---|---|
eliooxr | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4148 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵(,)𝐶) ≠ ∅) | |
2 | ndmioo 12514 | . . 3 ⊢ (¬ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵(,)𝐶) = ∅) | |
3 | 2 | necon1ai 2995 | . 2 ⊢ ((𝐵(,)𝐶) ≠ ∅ → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2106 ≠ wne 2968 ∅c0 4140 (class class class)co 6922 ℝ*cxr 10410 (,)cioo 12487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-xr 10415 df-ioo 12491 |
This theorem is referenced by: eliooord 12545 elioo4g 12546 ioorebas 12588 tgioo 23007 ioorcl2 23776 ioorinv2 23779 fct2relem 31277 iooelexlt 33805 |
Copyright terms: Public domain | W3C validator |