MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooxr Structured version   Visualization version   GIF version

Theorem eliooxr 12795
Description: A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
eliooxr (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))

Proof of Theorem eliooxr
StepHypRef Expression
1 ne0i 4284 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵(,)𝐶) ≠ ∅)
2 ndmioo 12765 . . 3 (¬ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵(,)𝐶) = ∅)
32necon1ai 3041 . 2 ((𝐵(,)𝐶) ≠ ∅ → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
41, 3syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115  wne 3014  c0 4277  (class class class)co 7150  *cxr 10673  (,)cioo 12738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-fv 6352  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-xr 10678  df-ioo 12742
This theorem is referenced by:  eliooord  12796  elioo4g  12797  ioorebas  12841  tgioo  23407  ioorcl2  24182  ioorinv2  24185  fct2relem  31928  iooelexlt  34727
  Copyright terms: Public domain W3C validator