MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooxr Structured version   Visualization version   GIF version

Theorem eliooxr 13442
Description: A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
eliooxr (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))

Proof of Theorem eliooxr
StepHypRef Expression
1 ne0i 4347 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵(,)𝐶) ≠ ∅)
2 ndmioo 13411 . . 3 (¬ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵(,)𝐶) = ∅)
32necon1ai 2966 . 2 ((𝐵(,)𝐶) ≠ ∅ → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
41, 3syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wne 2938  c0 4339  (class class class)co 7431  *cxr 11292  (,)cioo 13384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-xr 11297  df-ioo 13388
This theorem is referenced by:  eliooord  13443  elioo4g  13444  ioorebas  13488  tgioo  24832  ioorcl2  25621  ioorinv2  25624  fct2relem  34591  iooelexlt  37345
  Copyright terms: Public domain W3C validator