MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxss2 Structured version   Visualization version   GIF version

Theorem ixxss2 12511
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxss2.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑇𝑦)})
ixxss2.3 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵𝐵𝑊𝐶) → 𝑤𝑆𝐶))
Assertion
Ref Expression
ixxss2 ((𝐶 ∈ ℝ*𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑤,𝑊
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑂(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem ixxss2
StepHypRef Expression
1 ixxss2.2 . . . . . . . 8 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑇𝑦)})
21elixx3g 12505 . . . . . . 7 (𝑤 ∈ (𝐴𝑃𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝑅𝑤𝑤𝑇𝐵)))
32simplbi 493 . . . . . 6 (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*))
43adantl 475 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*))
54simp3d 1135 . . . 4 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ ℝ*)
62simprbi 492 . . . . . 6 (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴𝑅𝑤𝑤𝑇𝐵))
76adantl 475 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴𝑅𝑤𝑤𝑇𝐵))
87simpld 490 . . . 4 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴𝑅𝑤)
97simprd 491 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑇𝐵)
10 simplr 759 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵𝑊𝐶)
114simp2d 1134 . . . . . 6 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵 ∈ ℝ*)
12 simpll 757 . . . . . 6 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐶 ∈ ℝ*)
13 ixxss2.3 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵𝐵𝑊𝐶) → 𝑤𝑆𝐶))
145, 11, 12, 13syl3anc 1439 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → ((𝑤𝑇𝐵𝐵𝑊𝐶) → 𝑤𝑆𝐶))
159, 10, 14mp2and 689 . . . 4 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑆𝐶)
164simp1d 1133 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴 ∈ ℝ*)
17 ixx.1 . . . . . 6 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
1817elixx1 12501 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐶)))
1916, 12, 18syl2anc 579 . . . 4 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐶)))
205, 8, 15, 19mpbir3and 1399 . . 3 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ (𝐴𝑂𝐶))
2120ex 403 . 2 ((𝐶 ∈ ℝ*𝐵𝑊𝐶) → (𝑤 ∈ (𝐴𝑃𝐵) → 𝑤 ∈ (𝐴𝑂𝐶)))
2221ssrdv 3827 1 ((𝐶 ∈ ℝ*𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  {crab 3094  wss 3792   class class class wbr 4888  (class class class)co 6924  cmpt2 6926  *cxr 10412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-xr 10417
This theorem is referenced by:  iooss2  12528  leordtval2  21435  mnfnei  21444  psercnlem2  24626  tanord1  24732
  Copyright terms: Public domain W3C validator