| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxss2 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| ixxss2.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) |
| ixxss2.3 | ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
| Ref | Expression |
|---|---|
| ixxss2 | ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss2.2 | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) | |
| 2 | 1 | elixx3g 13319 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵))) |
| 3 | 2 | simplbi 497 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 5 | 4 | simp3d 1144 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ ℝ*) |
| 6 | 2 | simprbi 496 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
| 8 | 7 | simpld 494 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴𝑅𝑤) |
| 9 | 7 | simprd 495 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑇𝐵) |
| 10 | simplr 768 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵𝑊𝐶) | |
| 11 | 4 | simp2d 1143 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵 ∈ ℝ*) |
| 12 | simpll 766 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐶 ∈ ℝ*) | |
| 13 | ixxss2.3 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) | |
| 14 | 5, 11, 12, 13 | syl3anc 1373 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
| 15 | 9, 10, 14 | mp2and 699 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑆𝐶) |
| 16 | 4 | simp1d 1142 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴 ∈ ℝ*) |
| 17 | ixx.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 18 | 17 | elixx1 13315 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 19 | 16, 12, 18 | syl2anc 584 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 20 | 5, 8, 15, 19 | mpbir3and 1343 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ (𝐴𝑂𝐶)) |
| 21 | 20 | ex 412 | . 2 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝑤 ∈ (𝐴𝑃𝐵) → 𝑤 ∈ (𝐴𝑂𝐶))) |
| 22 | 21 | ssrdv 3952 | 1 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 class class class wbr 5107 (class class class)co 7387 ∈ cmpo 7389 ℝ*cxr 11207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-xr 11212 |
| This theorem is referenced by: iooss2 13342 leordtval2 23099 mnfnei 23108 psercnlem2 26334 tanord1 26446 |
| Copyright terms: Public domain | W3C validator |