![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxss2 | Structured version Visualization version GIF version |
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
ixxss2.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) |
ixxss2.3 | ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
Ref | Expression |
---|---|
ixxss2 | ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixxss2.2 | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) | |
2 | 1 | elixx3g 12505 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵))) |
3 | 2 | simplbi 493 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
4 | 3 | adantl 475 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
5 | 4 | simp3d 1135 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ ℝ*) |
6 | 2 | simprbi 492 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
7 | 6 | adantl 475 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
8 | 7 | simpld 490 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴𝑅𝑤) |
9 | 7 | simprd 491 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑇𝐵) |
10 | simplr 759 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵𝑊𝐶) | |
11 | 4 | simp2d 1134 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵 ∈ ℝ*) |
12 | simpll 757 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐶 ∈ ℝ*) | |
13 | ixxss2.3 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) | |
14 | 5, 11, 12, 13 | syl3anc 1439 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
15 | 9, 10, 14 | mp2and 689 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑆𝐶) |
16 | 4 | simp1d 1133 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴 ∈ ℝ*) |
17 | ixx.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
18 | 17 | elixx1 12501 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
19 | 16, 12, 18 | syl2anc 579 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
20 | 5, 8, 15, 19 | mpbir3and 1399 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ (𝐴𝑂𝐶)) |
21 | 20 | ex 403 | . 2 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝑤 ∈ (𝐴𝑃𝐵) → 𝑤 ∈ (𝐴𝑂𝐶))) |
22 | 21 | ssrdv 3827 | 1 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {crab 3094 ⊆ wss 3792 class class class wbr 4888 (class class class)co 6924 ↦ cmpt2 6926 ℝ*cxr 10412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-1st 7447 df-2nd 7448 df-xr 10417 |
This theorem is referenced by: iooss2 12528 leordtval2 21435 mnfnei 21444 psercnlem2 24626 tanord1 24732 |
Copyright terms: Public domain | W3C validator |