| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxss2 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| ixxss2.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) |
| ixxss2.3 | ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
| Ref | Expression |
|---|---|
| ixxss2 | ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss2.2 | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) | |
| 2 | 1 | elixx3g 13279 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵))) |
| 3 | 2 | simplbi 497 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 5 | 4 | simp3d 1144 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ ℝ*) |
| 6 | 2 | simprbi 496 | . . . . . 6 ⊢ (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴𝑅𝑤 ∧ 𝑤𝑇𝐵)) |
| 8 | 7 | simpld 494 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴𝑅𝑤) |
| 9 | 7 | simprd 495 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑇𝐵) |
| 10 | simplr 768 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵𝑊𝐶) | |
| 11 | 4 | simp2d 1143 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵 ∈ ℝ*) |
| 12 | simpll 766 | . . . . . 6 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐶 ∈ ℝ*) | |
| 13 | ixxss2.3 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) | |
| 14 | 5, 11, 12, 13 | syl3anc 1373 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) |
| 15 | 9, 10, 14 | mp2and 699 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑆𝐶) |
| 16 | 4 | simp1d 1142 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴 ∈ ℝ*) |
| 17 | ixx.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 18 | 17 | elixx1 13275 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 19 | 16, 12, 18 | syl2anc 584 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 20 | 5, 8, 15, 19 | mpbir3and 1343 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ (𝐴𝑂𝐶)) |
| 21 | 20 | ex 412 | . 2 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝑤 ∈ (𝐴𝑃𝐵) → 𝑤 ∈ (𝐴𝑂𝐶))) |
| 22 | 21 | ssrdv 3943 | 1 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 class class class wbr 5095 (class class class)co 7353 ∈ cmpo 7355 ℝ*cxr 11167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-xr 11172 |
| This theorem is referenced by: iooss2 13302 leordtval2 23115 mnfnei 23124 psercnlem2 26350 tanord1 26462 |
| Copyright terms: Public domain | W3C validator |