MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxss2 Structured version   Visualization version   GIF version

Theorem ixxss2 13027
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxss2.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑇𝑦)})
ixxss2.3 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵𝐵𝑊𝐶) → 𝑤𝑆𝐶))
Assertion
Ref Expression
ixxss2 ((𝐶 ∈ ℝ*𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑤,𝑊
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑂(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem ixxss2
StepHypRef Expression
1 ixxss2.2 . . . . . . . 8 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑇𝑦)})
21elixx3g 13021 . . . . . . 7 (𝑤 ∈ (𝐴𝑃𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝑅𝑤𝑤𝑇𝐵)))
32simplbi 497 . . . . . 6 (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*))
43adantl 481 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*))
54simp3d 1142 . . . 4 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ ℝ*)
62simprbi 496 . . . . . 6 (𝑤 ∈ (𝐴𝑃𝐵) → (𝐴𝑅𝑤𝑤𝑇𝐵))
76adantl 481 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝐴𝑅𝑤𝑤𝑇𝐵))
87simpld 494 . . . 4 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴𝑅𝑤)
97simprd 495 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑇𝐵)
10 simplr 765 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵𝑊𝐶)
114simp2d 1141 . . . . . 6 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐵 ∈ ℝ*)
12 simpll 763 . . . . . 6 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐶 ∈ ℝ*)
13 ixxss2.3 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵𝐵𝑊𝐶) → 𝑤𝑆𝐶))
145, 11, 12, 13syl3anc 1369 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → ((𝑤𝑇𝐵𝐵𝑊𝐶) → 𝑤𝑆𝐶))
159, 10, 14mp2and 695 . . . 4 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤𝑆𝐶)
164simp1d 1140 . . . . 5 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝐴 ∈ ℝ*)
17 ixx.1 . . . . . 6 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
1817elixx1 13017 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐶)))
1916, 12, 18syl2anc 583 . . . 4 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐶)))
205, 8, 15, 19mpbir3and 1340 . . 3 (((𝐶 ∈ ℝ*𝐵𝑊𝐶) ∧ 𝑤 ∈ (𝐴𝑃𝐵)) → 𝑤 ∈ (𝐴𝑂𝐶))
2120ex 412 . 2 ((𝐶 ∈ ℝ*𝐵𝑊𝐶) → (𝑤 ∈ (𝐴𝑃𝐵) → 𝑤 ∈ (𝐴𝑂𝐶)))
2221ssrdv 3923 1 ((𝐶 ∈ ℝ*𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  wss 3883   class class class wbr 5070  (class class class)co 7255  cmpo 7257  *cxr 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-xr 10944
This theorem is referenced by:  iooss2  13044  leordtval2  22271  mnfnei  22280  psercnlem2  25488  tanord1  25598
  Copyright terms: Public domain W3C validator