MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapdd Structured version   Visualization version   GIF version

Theorem elmapdd 8768
Description: Deduction associated with elmapd 8767. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
elmapdd.a (𝜑𝐴𝑉)
elmapdd.b (𝜑𝐵𝑊)
elmapdd.c (𝜑𝐶:𝐵𝐴)
Assertion
Ref Expression
elmapdd (𝜑𝐶 ∈ (𝐴m 𝐵))

Proof of Theorem elmapdd
StepHypRef Expression
1 elmapdd.c . 2 (𝜑𝐶:𝐵𝐴)
2 elmapdd.a . . 3 (𝜑𝐴𝑉)
3 elmapdd.b . . 3 (𝜑𝐵𝑊)
42, 3elmapd 8767 . 2 (𝜑 → (𝐶 ∈ (𝐴m 𝐵) ↔ 𝐶:𝐵𝐴))
51, 4mpbird 257 1 (𝜑𝐶 ∈ (𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wf 6478  (class class class)co 7349  m cmap 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755
This theorem is referenced by:  psdcl  22046  mhmcompl  22265  mhmcoaddmpl  22266  elrgspnlem1  33182  elrgspnlem2  33183  elrgspnlem3  33184  elrgspnlem4  33185  elrgspnsubrunlem1  33187  elrgspnsubrunlem2  33188  elrspunsn  33366  1arithidom  33474  mplvrpmfgalem  33545  mplvrpmga  33546  ply1degltdimlem  33589  fldextrspunlsplem  33640  fldextrspunlsp  33641  hashnexinj  42101  mapcod  42216  mhmcopsr  42522  mhmcoaddpsr  42523  evlsbagval  42539  selvcllem5  42555  selvvvval  42558  evlselv  42560  mhphf  42570  dvnprodlem1  45927
  Copyright terms: Public domain W3C validator