| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapdd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with elmapd 8813. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| elmapdd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elmapdd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| elmapdd.c | ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) |
| Ref | Expression |
|---|---|
| elmapdd | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapdd.c | . 2 ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) | |
| 2 | elmapdd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elmapdd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 2, 3 | elmapd 8813 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 |
| This theorem is referenced by: psdcl 22048 mhmcompl 22267 mhmcoaddmpl 22268 elrgspnlem1 33193 elrgspnlem2 33194 elrgspnlem3 33195 elrgspnlem4 33196 elrgspnsubrunlem1 33198 elrgspnsubrunlem2 33199 elrspunsn 33400 1arithidom 33508 ply1degltdimlem 33618 fldextrspunlsplem 33668 fldextrspunlsp 33669 hashnexinj 42116 mapcod 42231 mhmcopsr 42537 mhmcoaddpsr 42538 evlsbagval 42554 selvcllem5 42570 selvvvval 42573 evlselv 42575 mhphf 42585 dvnprodlem1 45944 |
| Copyright terms: Public domain | W3C validator |