MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapdd Structured version   Visualization version   GIF version

Theorem elmapdd 8899
Description: Deduction associated with elmapd 8898. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
elmapdd.a (𝜑𝐴𝑉)
elmapdd.b (𝜑𝐵𝑊)
elmapdd.c (𝜑𝐶:𝐵𝐴)
Assertion
Ref Expression
elmapdd (𝜑𝐶 ∈ (𝐴m 𝐵))

Proof of Theorem elmapdd
StepHypRef Expression
1 elmapdd.c . 2 (𝜑𝐶:𝐵𝐴)
2 elmapdd.a . . 3 (𝜑𝐴𝑉)
3 elmapdd.b . . 3 (𝜑𝐵𝑊)
42, 3elmapd 8898 . 2 (𝜑 → (𝐶 ∈ (𝐴m 𝐵) ↔ 𝐶:𝐵𝐴))
51, 4mpbird 257 1 (𝜑𝐶 ∈ (𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wf 6569  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886
This theorem is referenced by:  psdcl  22188  mhmcompl  22405  mhmcoaddmpl  22406  elrspunsn  33422  1arithidom  33530  ply1degltdimlem  33635  hashnexinj  42085  mapcod  42238  mhmcopsr  42504  mhmcoaddpsr  42505  evlsbagval  42521  selvcllem5  42537  selvvvval  42540  evlselv  42542  mhphf  42552
  Copyright terms: Public domain W3C validator