|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elmapdd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with elmapd 8881. (Contributed by SN, 29-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| elmapdd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| elmapdd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| elmapdd.c | ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) | 
| Ref | Expression | 
|---|---|
| elmapdd | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elmapdd.c | . 2 ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) | |
| 2 | elmapdd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elmapdd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 2, 3 | elmapd 8881 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | 
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 ⟶wf 6556 (class class class)co 7432 ↑m cmap 8867 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 | 
| This theorem is referenced by: psdcl 22166 mhmcompl 22385 mhmcoaddmpl 22386 elrgspnlem1 33247 elrgspnlem2 33248 elrgspnlem3 33249 elrgspnlem4 33250 elrgspnsubrunlem1 33252 elrgspnsubrunlem2 33253 elrspunsn 33458 1arithidom 33566 ply1degltdimlem 33674 fldextrspunlsplem 33724 fldextrspunlsp 33725 hashnexinj 42130 mapcod 42284 mhmcopsr 42564 mhmcoaddpsr 42565 evlsbagval 42581 selvcllem5 42597 selvvvval 42600 evlselv 42602 mhphf 42612 dvnprodlem1 45966 | 
| Copyright terms: Public domain | W3C validator |