| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapdd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with elmapd 8767. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| elmapdd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elmapdd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| elmapdd.c | ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) |
| Ref | Expression |
|---|---|
| elmapdd | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapdd.c | . 2 ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) | |
| 2 | elmapdd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elmapdd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 2, 3 | elmapd 8767 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⟶wf 6478 (class class class)co 7349 ↑m cmap 8753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 |
| This theorem is referenced by: psdcl 22046 mhmcompl 22265 mhmcoaddmpl 22266 elrgspnlem1 33182 elrgspnlem2 33183 elrgspnlem3 33184 elrgspnlem4 33185 elrgspnsubrunlem1 33187 elrgspnsubrunlem2 33188 elrspunsn 33366 1arithidom 33474 mplvrpmfgalem 33545 mplvrpmga 33546 ply1degltdimlem 33589 fldextrspunlsplem 33640 fldextrspunlsp 33641 hashnexinj 42101 mapcod 42216 mhmcopsr 42522 mhmcoaddpsr 42523 evlsbagval 42539 selvcllem5 42555 selvvvval 42558 evlselv 42560 mhphf 42570 dvnprodlem1 45927 |
| Copyright terms: Public domain | W3C validator |