| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapdd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with elmapd 8859. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| elmapdd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elmapdd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| elmapdd.c | ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) |
| Ref | Expression |
|---|---|
| elmapdd | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapdd.c | . 2 ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) | |
| 2 | elmapdd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elmapdd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 2, 3 | elmapd 8859 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⟶wf 6532 (class class class)co 7410 ↑m cmap 8845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 |
| This theorem is referenced by: psdcl 22104 mhmcompl 22323 mhmcoaddmpl 22324 elrgspnlem1 33242 elrgspnlem2 33243 elrgspnlem3 33244 elrgspnlem4 33245 elrgspnsubrunlem1 33247 elrgspnsubrunlem2 33248 elrspunsn 33449 1arithidom 33557 ply1degltdimlem 33667 fldextrspunlsplem 33719 fldextrspunlsp 33720 hashnexinj 42146 mapcod 42261 mhmcopsr 42539 mhmcoaddpsr 42540 evlsbagval 42556 selvcllem5 42572 selvvvval 42575 evlselv 42577 mhphf 42587 dvnprodlem1 45942 |
| Copyright terms: Public domain | W3C validator |