MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapdd Structured version   Visualization version   GIF version

Theorem elmapdd 8860
Description: Deduction associated with elmapd 8859. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
elmapdd.a (𝜑𝐴𝑉)
elmapdd.b (𝜑𝐵𝑊)
elmapdd.c (𝜑𝐶:𝐵𝐴)
Assertion
Ref Expression
elmapdd (𝜑𝐶 ∈ (𝐴m 𝐵))

Proof of Theorem elmapdd
StepHypRef Expression
1 elmapdd.c . 2 (𝜑𝐶:𝐵𝐴)
2 elmapdd.a . . 3 (𝜑𝐴𝑉)
3 elmapdd.b . . 3 (𝜑𝐵𝑊)
42, 3elmapd 8859 . 2 (𝜑 → (𝐶 ∈ (𝐴m 𝐵) ↔ 𝐶:𝐵𝐴))
51, 4mpbird 257 1 (𝜑𝐶 ∈ (𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wf 6532  (class class class)co 7410  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847
This theorem is referenced by:  psdcl  22104  mhmcompl  22323  mhmcoaddmpl  22324  elrgspnlem1  33242  elrgspnlem2  33243  elrgspnlem3  33244  elrgspnlem4  33245  elrgspnsubrunlem1  33247  elrgspnsubrunlem2  33248  elrspunsn  33449  1arithidom  33557  ply1degltdimlem  33667  fldextrspunlsplem  33719  fldextrspunlsp  33720  hashnexinj  42146  mapcod  42261  mhmcopsr  42539  mhmcoaddpsr  42540  evlsbagval  42556  selvcllem5  42572  selvvvval  42575  evlselv  42577  mhphf  42587  dvnprodlem1  45942
  Copyright terms: Public domain W3C validator