| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapdd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with elmapd 8764. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| elmapdd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elmapdd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| elmapdd.c | ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) |
| Ref | Expression |
|---|---|
| elmapdd | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapdd.c | . 2 ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) | |
| 2 | elmapdd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elmapdd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 2, 3 | elmapd 8764 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⟶wf 6477 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 |
| This theorem is referenced by: psdcl 22076 mhmcompl 22295 mhmcoaddmpl 22296 elrgspnlem1 33209 elrgspnlem2 33210 elrgspnlem3 33211 elrgspnlem4 33212 elrgspnsubrunlem1 33214 elrgspnsubrunlem2 33215 elrspunsn 33394 1arithidom 33502 mplvrpmlem 33573 mplvrpmfgalem 33574 mplvrpmga 33575 mplvrpmmhm 33576 mplvrpmrhm 33577 esplylem 33587 esplympl 33588 esplyfv1 33590 ply1degltdimlem 33635 fldextrspunlsplem 33686 fldextrspunlsp 33687 hashnexinj 42169 mapcod 42284 mhmcopsr 42590 mhmcoaddpsr 42591 evlsbagval 42607 selvcllem5 42623 selvvvval 42626 evlselv 42628 mhphf 42638 dvnprodlem1 45992 |
| Copyright terms: Public domain | W3C validator |