MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapdd Structured version   Visualization version   GIF version

Theorem elmapdd 8765
Description: Deduction associated with elmapd 8764. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
elmapdd.a (𝜑𝐴𝑉)
elmapdd.b (𝜑𝐵𝑊)
elmapdd.c (𝜑𝐶:𝐵𝐴)
Assertion
Ref Expression
elmapdd (𝜑𝐶 ∈ (𝐴m 𝐵))

Proof of Theorem elmapdd
StepHypRef Expression
1 elmapdd.c . 2 (𝜑𝐶:𝐵𝐴)
2 elmapdd.a . . 3 (𝜑𝐴𝑉)
3 elmapdd.b . . 3 (𝜑𝐵𝑊)
42, 3elmapd 8764 . 2 (𝜑 → (𝐶 ∈ (𝐴m 𝐵) ↔ 𝐶:𝐵𝐴))
51, 4mpbird 257 1 (𝜑𝐶 ∈ (𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wf 6477  (class class class)co 7346  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752
This theorem is referenced by:  psdcl  22076  mhmcompl  22295  mhmcoaddmpl  22296  elrgspnlem1  33209  elrgspnlem2  33210  elrgspnlem3  33211  elrgspnlem4  33212  elrgspnsubrunlem1  33214  elrgspnsubrunlem2  33215  elrspunsn  33394  1arithidom  33502  mplvrpmlem  33573  mplvrpmfgalem  33574  mplvrpmga  33575  mplvrpmmhm  33576  mplvrpmrhm  33577  esplylem  33587  esplympl  33588  esplyfv1  33590  ply1degltdimlem  33635  fldextrspunlsplem  33686  fldextrspunlsp  33687  hashnexinj  42169  mapcod  42284  mhmcopsr  42590  mhmcoaddpsr  42591  evlsbagval  42607  selvcllem5  42623  selvvvval  42626  evlselv  42628  mhphf  42638  dvnprodlem1  45992
  Copyright terms: Public domain W3C validator