| Step | Hyp | Ref
| Expression |
| 1 | | fvexd 6896 |
. . 3
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 2 | | ovex 7443 |
. . . . 5
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 3 | 2 | rabex 5314 |
. . . 4
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
| 4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
| 5 | | psdcl.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mgm) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Mgm) |
| 7 | | eqid 2736 |
. . . . . . . . 9
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 8 | 7 | psrbagf 21883 |
. . . . . . . 8
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0) |
| 9 | 8 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0) |
| 10 | | psdcl.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 11 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
| 12 | 9, 11 | ffvelcdmd 7080 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘‘𝑋) ∈
ℕ0) |
| 13 | | nn0p1nn 12545 |
. . . . . 6
⊢ ((𝑘‘𝑋) ∈ ℕ0 → ((𝑘‘𝑋) + 1) ∈ ℕ) |
| 14 | 12, 13 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘‘𝑋) + 1) ∈ ℕ) |
| 15 | | psdcl.s |
. . . . . . . 8
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 16 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 17 | | psdcl.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
| 18 | | psdcl.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 19 | 15, 16, 7, 17, 18 | psrelbas 21899 |
. . . . . . 7
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 21 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 22 | | reldmpsr 21879 |
. . . . . . . . . . 11
⊢ Rel dom
mPwSer |
| 23 | 15, 17, 22 | strov2rcl 17241 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
| 24 | 18, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ V) |
| 25 | | 1nn0 12522 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
| 26 | 7 | snifpsrbag 21885 |
. . . . . . . . 9
⊢ ((𝐼 ∈ V ∧ 1 ∈
ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 27 | 24, 25, 26 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 29 | 7 | psrbagaddcl 21889 |
. . . . . . 7
⊢ ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 30 | 21, 28, 29 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 31 | 20, 30 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅)) |
| 32 | | eqid 2736 |
. . . . . 6
⊢
(.g‘𝑅) = (.g‘𝑅) |
| 33 | 16, 32 | mulgnncl 19077 |
. . . . 5
⊢ ((𝑅 ∈ Mgm ∧ ((𝑘‘𝑋) + 1) ∈ ℕ ∧ (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅)) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ (Base‘𝑅)) |
| 34 | 6, 14, 31, 33 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ (Base‘𝑅)) |
| 35 | 34 | fmpttd 7110 |
. . 3
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 36 | 1, 4, 35 | elmapdd 8860 |
. 2
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
| 37 | 15, 17, 7, 10, 18 | psdval 22102 |
. 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 38 | 15, 16, 7, 17, 24 | psrbas 21898 |
. 2
⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
| 39 | 36, 37, 38 | 3eltr4d 2850 |
1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |