| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fvexd 6920 | . . 3
⊢ (𝜑 → (Base‘𝑅) ∈ V) | 
| 2 |  | ovex 7465 | . . . . 5
⊢
(ℕ0 ↑m 𝐼) ∈ V | 
| 3 | 2 | rabex 5338 | . . . 4
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V | 
| 4 | 3 | a1i 11 | . . 3
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) | 
| 5 |  | psdcl.r | . . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mgm) | 
| 6 | 5 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Mgm) | 
| 7 |  | eqid 2736 | . . . . . . . . 9
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} | 
| 8 | 7 | psrbagf 21939 | . . . . . . . 8
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0) | 
| 9 | 8 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0) | 
| 10 |  | psdcl.x | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐼) | 
| 11 | 10 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) | 
| 12 | 9, 11 | ffvelcdmd 7104 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘‘𝑋) ∈
ℕ0) | 
| 13 |  | nn0p1nn 12567 | . . . . . 6
⊢ ((𝑘‘𝑋) ∈ ℕ0 → ((𝑘‘𝑋) + 1) ∈ ℕ) | 
| 14 | 12, 13 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘‘𝑋) + 1) ∈ ℕ) | 
| 15 |  | psdcl.s | . . . . . . . 8
⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| 16 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 17 |  | psdcl.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) | 
| 18 |  | psdcl.f | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) | 
| 19 | 15, 16, 7, 17, 18 | psrelbas 21955 | . . . . . . 7
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) | 
| 20 | 19 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) | 
| 21 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) | 
| 22 |  | reldmpsr 21935 | . . . . . . . . . . 11
⊢ Rel dom
mPwSer | 
| 23 | 15, 17, 22 | strov2rcl 17256 | . . . . . . . . . 10
⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) | 
| 24 | 18, 23 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ V) | 
| 25 |  | 1nn0 12544 | . . . . . . . . 9
⊢ 1 ∈
ℕ0 | 
| 26 | 7 | snifpsrbag 21941 | . . . . . . . . 9
⊢ ((𝐼 ∈ V ∧ 1 ∈
ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) | 
| 27 | 24, 25, 26 | sylancl 586 | . . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) | 
| 28 | 27 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) | 
| 29 | 7 | psrbagaddcl 21945 | . . . . . . 7
⊢ ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) | 
| 30 | 21, 28, 29 | syl2anc 584 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) | 
| 31 | 20, 30 | ffvelcdmd 7104 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅)) | 
| 32 |  | eqid 2736 | . . . . . 6
⊢
(.g‘𝑅) = (.g‘𝑅) | 
| 33 | 16, 32 | mulgnncl 19108 | . . . . 5
⊢ ((𝑅 ∈ Mgm ∧ ((𝑘‘𝑋) + 1) ∈ ℕ ∧ (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅)) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ (Base‘𝑅)) | 
| 34 | 6, 14, 31, 33 | syl3anc 1372 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ (Base‘𝑅)) | 
| 35 | 34 | fmpttd 7134 | . . 3
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) | 
| 36 | 1, 4, 35 | elmapdd 8882 | . 2
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) | 
| 37 | 15, 17, 7, 10, 18 | psdval 22164 | . 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) | 
| 38 | 15, 16, 7, 17, 24 | psrbas 21954 | . 2
⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) | 
| 39 | 36, 37, 38 | 3eltr4d 2855 | 1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |