Step | Hyp | Ref
| Expression |
1 | | fvexd 6905 |
. . 3
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
2 | | ovex 7446 |
. . . . 5
⊢
(ℕ0 ↑m 𝐼) ∈ V |
3 | 2 | rabex 5329 |
. . . 4
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
5 | | psdcl.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mgm) |
6 | 5 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Mgm) |
7 | | eqid 2726 |
. . . . . . . . 9
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
8 | 7 | psrbagf 21908 |
. . . . . . . 8
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0) |
9 | 8 | adantl 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0) |
10 | | psdcl.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
11 | 10 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
12 | 9, 11 | ffvelcdmd 7088 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘‘𝑋) ∈
ℕ0) |
13 | | nn0p1nn 12554 |
. . . . . 6
⊢ ((𝑘‘𝑋) ∈ ℕ0 → ((𝑘‘𝑋) + 1) ∈ ℕ) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘‘𝑋) + 1) ∈ ℕ) |
15 | | psdcl.s |
. . . . . . . 8
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
16 | | eqid 2726 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
17 | | psdcl.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
18 | | psdcl.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
19 | 15, 16, 7, 17, 18 | psrelbas 21936 |
. . . . . . 7
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
20 | 19 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
21 | | simpr 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
22 | | psdcl.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
23 | | 1nn0 12531 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
24 | 7 | snifpsrbag 21912 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 1 ∈ ℕ0) →
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
25 | 22, 23, 24 | sylancl 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
26 | 25 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
27 | 7 | psrbagaddcl 21918 |
. . . . . . 7
⊢ ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
28 | 21, 26, 27 | syl2anc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
29 | 20, 28 | ffvelcdmd 7088 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅)) |
30 | | eqid 2726 |
. . . . . 6
⊢
(.g‘𝑅) = (.g‘𝑅) |
31 | 16, 30 | mulgnncl 19076 |
. . . . 5
⊢ ((𝑅 ∈ Mgm ∧ ((𝑘‘𝑋) + 1) ∈ ℕ ∧ (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅)) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ (Base‘𝑅)) |
32 | 6, 14, 29, 31 | syl3anc 1368 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ (Base‘𝑅)) |
33 | 32 | fmpttd 7118 |
. . 3
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
34 | 1, 4, 33 | elmapdd 8859 |
. 2
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
35 | 15, 17, 7, 22, 5, 10, 18 | psdval 22146 |
. 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
36 | 15, 16, 7, 17, 22 | psrbas 21935 |
. 2
⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
37 | 34, 35, 36 | 3eltr4d 2841 |
1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |