MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdcl Structured version   Visualization version   GIF version

Theorem psdcl 22048
Description: The derivative of a power series is a power series. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdcl.s 𝑆 = (𝐼 mPwSer 𝑅)
psdcl.b 𝐵 = (Base‘𝑆)
psdcl.r (𝜑𝑅 ∈ Mgm)
psdcl.x (𝜑𝑋𝐼)
psdcl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
psdcl (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)

Proof of Theorem psdcl
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6873 . . 3 (𝜑 → (Base‘𝑅) ∈ V)
2 ovex 7420 . . . . 5 (ℕ0m 𝐼) ∈ V
32rabex 5294 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
43a1i 11 . . 3 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
5 psdcl.r . . . . . 6 (𝜑𝑅 ∈ Mgm)
65adantr 480 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Mgm)
7 eqid 2729 . . . . . . . . 9 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
87psrbagf 21827 . . . . . . . 8 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
98adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
10 psdcl.x . . . . . . . 8 (𝜑𝑋𝐼)
1110adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
129, 11ffvelcdmd 7057 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘𝑋) ∈ ℕ0)
13 nn0p1nn 12481 . . . . . 6 ((𝑘𝑋) ∈ ℕ0 → ((𝑘𝑋) + 1) ∈ ℕ)
1412, 13syl 17 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘𝑋) + 1) ∈ ℕ)
15 psdcl.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
16 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
17 psdcl.b . . . . . . . 8 𝐵 = (Base‘𝑆)
18 psdcl.f . . . . . . . 8 (𝜑𝐹𝐵)
1915, 16, 7, 17, 18psrelbas 21843 . . . . . . 7 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2019adantr 480 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
21 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
22 reldmpsr 21823 . . . . . . . . . . 11 Rel dom mPwSer
2315, 17, 22strov2rcl 17187 . . . . . . . . . 10 (𝐹𝐵𝐼 ∈ V)
2418, 23syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ V)
25 1nn0 12458 . . . . . . . . 9 1 ∈ ℕ0
267snifpsrbag 21829 . . . . . . . . 9 ((𝐼 ∈ V ∧ 1 ∈ ℕ0) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2724, 25, 26sylancl 586 . . . . . . . 8 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2827adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
297psrbagaddcl 21833 . . . . . . 7 ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3021, 28, 29syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3120, 30ffvelcdmd 7057 . . . . 5 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
32 eqid 2729 . . . . . 6 (.g𝑅) = (.g𝑅)
3316, 32mulgnncl 19021 . . . . 5 ((𝑅 ∈ Mgm ∧ ((𝑘𝑋) + 1) ∈ ℕ ∧ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅)) → (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ (Base‘𝑅))
346, 14, 31, 33syl3anc 1373 . . . 4 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ (Base‘𝑅))
3534fmpttd 7087 . . 3 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
361, 4, 35elmapdd 8814 . 2 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
3715, 17, 7, 10, 18psdval 22046 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
3815, 16, 7, 17, 24psrbas 21842 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
3936, 37, 383eltr4d 2843 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  ifcif 4488  cmpt 5188  ccnv 5637  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  0cn0 12442  Basecbs 17179  Mgmcmgm 18565  .gcmg 18999   mPwSer cmps 21813   mPSDer cpsd 22017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-mgm 18567  df-mulg 19000  df-psr 21818  df-psd 22043
This theorem is referenced by:  psdmplcl  22049  psdadd  22050  psdvsca  22051  psdmul  22053  psd1  22054  psdpw  22057
  Copyright terms: Public domain W3C validator