![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mhmcoaddmpl | Structured version Visualization version GIF version |
Description: Show that the ring homomorphism in rhmmpl 41843 preserves addition. (Contributed by SN, 8-Feb-2025.) |
Ref | Expression |
---|---|
mhmcoaddmpl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhmcoaddmpl.q | ⊢ 𝑄 = (𝐼 mPoly 𝑆) |
mhmcoaddmpl.b | ⊢ 𝐵 = (Base‘𝑃) |
mhmcoaddmpl.c | ⊢ 𝐶 = (Base‘𝑄) |
mhmcoaddmpl.1 | ⊢ + = (+g‘𝑃) |
mhmcoaddmpl.2 | ⊢ ✚ = (+g‘𝑄) |
mhmcoaddmpl.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
mhmcoaddmpl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
mhmcoaddmpl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
mhmcoaddmpl | ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmcoaddmpl.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) | |
2 | fvexd 6906 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
3 | eqid 2725 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
4 | ovexd 7450 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
5 | 3, 4 | rabexd 5330 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
6 | mhmcoaddmpl.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
7 | eqid 2725 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | mhmcoaddmpl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
9 | mhmcoaddmpl.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
10 | 6, 7, 8, 3, 9 | mplelf 21945 | . . . 4 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
11 | 2, 5, 10 | elmapdd 8856 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
12 | mhmcoaddmpl.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
13 | 6, 7, 8, 3, 12 | mplelf 21945 | . . . 4 ⊢ (𝜑 → 𝐺:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
14 | 2, 5, 13 | elmapdd 8856 | . . 3 ⊢ (𝜑 → 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
15 | eqid 2725 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
16 | eqid 2725 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
17 | 7, 15, 16 | mhmvlin 18755 | . . 3 ⊢ ((𝐻 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) → (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
18 | 1, 11, 14, 17 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
19 | mhmcoaddmpl.1 | . . . 4 ⊢ + = (+g‘𝑃) | |
20 | 6, 8, 15, 19, 9, 12 | mpladd 21956 | . . 3 ⊢ (𝜑 → (𝐹 + 𝐺) = (𝐹 ∘f (+g‘𝑅)𝐺)) |
21 | 20 | coeq2d 5859 | . 2 ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺))) |
22 | mhmcoaddmpl.q | . . 3 ⊢ 𝑄 = (𝐼 mPoly 𝑆) | |
23 | mhmcoaddmpl.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
24 | mhmcoaddmpl.2 | . . 3 ⊢ ✚ = (+g‘𝑄) | |
25 | 6, 22, 8, 23, 1, 9 | mhmcompl 41840 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
26 | 6, 22, 8, 23, 1, 12 | mhmcompl 41840 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐺) ∈ 𝐶) |
27 | 22, 23, 16, 24, 25, 26 | mpladd 21956 | . 2 ⊢ (𝜑 → ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
28 | 18, 21, 27 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3419 Vcvv 3463 ◡ccnv 5671 “ cima 5675 ∘ ccom 5676 ‘cfv 6542 (class class class)co 7415 ∘f cof 7679 ↑m cmap 8841 Fincfn 8960 ℕcn 12240 ℕ0cn0 12500 Basecbs 17177 +gcplusg 17230 MndHom cmhm 18735 mPoly cmpl 21841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-tset 17249 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-mhm 18737 df-psr 21844 df-mpl 21846 |
This theorem is referenced by: rhmmpl 41843 selvadd 41885 |
Copyright terms: Public domain | W3C validator |