| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmcoaddmpl | Structured version Visualization version GIF version | ||
| Description: Show that the ring homomorphism in rhmmpl 22308 preserves addition. (Contributed by SN, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| mhmcoaddmpl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhmcoaddmpl.q | ⊢ 𝑄 = (𝐼 mPoly 𝑆) |
| mhmcoaddmpl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhmcoaddmpl.c | ⊢ 𝐶 = (Base‘𝑄) |
| mhmcoaddmpl.1 | ⊢ + = (+g‘𝑃) |
| mhmcoaddmpl.2 | ⊢ ✚ = (+g‘𝑄) |
| mhmcoaddmpl.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
| mhmcoaddmpl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| mhmcoaddmpl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mhmcoaddmpl | ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcoaddmpl.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) | |
| 2 | fvexd 6888 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
| 3 | eqid 2734 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 4 | ovexd 7435 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 5 | 3, 4 | rabexd 5308 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 6 | mhmcoaddmpl.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 7 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | mhmcoaddmpl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | mhmcoaddmpl.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 10 | 6, 7, 8, 3, 9 | mplelf 21945 | . . . 4 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 11 | 2, 5, 10 | elmapdd 8850 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 12 | mhmcoaddmpl.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 13 | 6, 7, 8, 3, 12 | mplelf 21945 | . . . 4 ⊢ (𝜑 → 𝐺:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 14 | 2, 5, 13 | elmapdd 8850 | . . 3 ⊢ (𝜑 → 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 15 | eqid 2734 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 16 | eqid 2734 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 17 | 7, 15, 16 | mhmvlin 18766 | . . 3 ⊢ ((𝐻 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) → (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
| 18 | 1, 11, 14, 17 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
| 19 | mhmcoaddmpl.1 | . . . 4 ⊢ + = (+g‘𝑃) | |
| 20 | 6, 8, 15, 19, 9, 12 | mpladd 21956 | . . 3 ⊢ (𝜑 → (𝐹 + 𝐺) = (𝐹 ∘f (+g‘𝑅)𝐺)) |
| 21 | 20 | coeq2d 5840 | . 2 ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺))) |
| 22 | mhmcoaddmpl.q | . . 3 ⊢ 𝑄 = (𝐼 mPoly 𝑆) | |
| 23 | mhmcoaddmpl.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
| 24 | mhmcoaddmpl.2 | . . 3 ⊢ ✚ = (+g‘𝑄) | |
| 25 | 6, 22, 8, 23, 1, 9 | mhmcompl 22305 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| 26 | 6, 22, 8, 23, 1, 12 | mhmcompl 22305 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐺) ∈ 𝐶) |
| 27 | 22, 23, 16, 24, 25, 26 | mpladd 21956 | . 2 ⊢ (𝜑 → ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
| 28 | 18, 21, 27 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3413 Vcvv 3457 ◡ccnv 5651 “ cima 5655 ∘ ccom 5656 ‘cfv 6528 (class class class)co 7400 ∘f cof 7664 ↑m cmap 8835 Fincfn 8954 ℕcn 12233 ℕ0cn0 12494 Basecbs 17215 +gcplusg 17258 MndHom cmhm 18746 mPoly cmpl 21853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-tset 17277 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18748 df-psr 21856 df-mpl 21858 |
| This theorem is referenced by: rhmmpl 22308 selvadd 42543 |
| Copyright terms: Public domain | W3C validator |