| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmcoaddmpl | Structured version Visualization version GIF version | ||
| Description: Show that the ring homomorphism in rhmmpl 22326 preserves addition. (Contributed by SN, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| mhmcoaddmpl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhmcoaddmpl.q | ⊢ 𝑄 = (𝐼 mPoly 𝑆) |
| mhmcoaddmpl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhmcoaddmpl.c | ⊢ 𝐶 = (Base‘𝑄) |
| mhmcoaddmpl.1 | ⊢ + = (+g‘𝑃) |
| mhmcoaddmpl.2 | ⊢ ✚ = (+g‘𝑄) |
| mhmcoaddmpl.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
| mhmcoaddmpl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| mhmcoaddmpl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mhmcoaddmpl | ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcoaddmpl.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) | |
| 2 | fvexd 6896 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
| 3 | eqid 2736 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 4 | ovexd 7445 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 5 | 3, 4 | rabexd 5315 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 6 | mhmcoaddmpl.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 7 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | mhmcoaddmpl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | mhmcoaddmpl.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 10 | 6, 7, 8, 3, 9 | mplelf 21963 | . . . 4 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 11 | 2, 5, 10 | elmapdd 8860 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 12 | mhmcoaddmpl.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 13 | 6, 7, 8, 3, 12 | mplelf 21963 | . . . 4 ⊢ (𝜑 → 𝐺:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 14 | 2, 5, 13 | elmapdd 8860 | . . 3 ⊢ (𝜑 → 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 15 | eqid 2736 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 16 | eqid 2736 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 17 | 7, 15, 16 | mhmvlin 18784 | . . 3 ⊢ ((𝐻 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝐺 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) → (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
| 18 | 1, 11, 14, 17 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
| 19 | mhmcoaddmpl.1 | . . . 4 ⊢ + = (+g‘𝑃) | |
| 20 | 6, 8, 15, 19, 9, 12 | mpladd 21974 | . . 3 ⊢ (𝜑 → (𝐹 + 𝐺) = (𝐹 ∘f (+g‘𝑅)𝐺)) |
| 21 | 20 | coeq2d 5847 | . 2 ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = (𝐻 ∘ (𝐹 ∘f (+g‘𝑅)𝐺))) |
| 22 | mhmcoaddmpl.q | . . 3 ⊢ 𝑄 = (𝐼 mPoly 𝑆) | |
| 23 | mhmcoaddmpl.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
| 24 | mhmcoaddmpl.2 | . . 3 ⊢ ✚ = (+g‘𝑄) | |
| 25 | 6, 22, 8, 23, 1, 9 | mhmcompl 22323 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| 26 | 6, 22, 8, 23, 1, 12 | mhmcompl 22323 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐺) ∈ 𝐶) |
| 27 | 22, 23, 16, 24, 25, 26 | mpladd 21974 | . 2 ⊢ (𝜑 → ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺)) = ((𝐻 ∘ 𝐹) ∘f (+g‘𝑆)(𝐻 ∘ 𝐺))) |
| 28 | 18, 21, 27 | 3eqtr4d 2781 | 1 ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ◡ccnv 5658 “ cima 5662 ∘ ccom 5663 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 +gcplusg 17276 MndHom cmhm 18764 mPoly cmpl 21871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-tset 17295 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-psr 21874 df-mpl 21876 |
| This theorem is referenced by: rhmmpl 22326 selvadd 42578 |
| Copyright terms: Public domain | W3C validator |