Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgrsub2 Structured version   Visualization version   GIF version

Theorem dgrsub2 43167
Description: Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Hypothesis
Ref Expression
dgrsub2.a 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrsub2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)

Proof of Theorem dgrsub2
StepHypRef Expression
1 simpr2 1196 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ)
2 dgr0 26193 . . . . 5 (deg‘0𝑝) = 0
3 nngt0 12153 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
42, 3eqbrtrid 5126 . . . 4 (𝑁 ∈ ℕ → (deg‘0𝑝) < 𝑁)
5 fveq2 6822 . . . . 5 ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) = (deg‘0𝑝))
65breq1d 5101 . . . 4 ((𝐹f𝐺) = 0𝑝 → ((deg‘(𝐹f𝐺)) < 𝑁 ↔ (deg‘0𝑝) < 𝑁))
74, 6syl5ibrcom 247 . . 3 (𝑁 ∈ ℕ → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
81, 7syl 17 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
9 plyssc 26130 . . . . . . . 8 (Poly‘𝑆) ⊆ (Poly‘ℂ)
109sseli 3930 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
11 plyssc 26130 . . . . . . . 8 (Poly‘𝑇) ⊆ (Poly‘ℂ)
1211sseli 3930 . . . . . . 7 (𝐺 ∈ (Poly‘𝑇) → 𝐺 ∈ (Poly‘ℂ))
13 eqid 2731 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
14 eqid 2731 . . . . . . . 8 (deg‘𝐺) = (deg‘𝐺)
1513, 14dgrsub 26203 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1610, 12, 15syl2an 596 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1716adantr 480 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
18 simpr1 1195 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐺) = 𝑁)
19 dgrsub2.a . . . . . . . . 9 𝑁 = (deg‘𝐹)
2019eqcomi 2740 . . . . . . . 8 (deg‘𝐹) = 𝑁
2120a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐹) = 𝑁)
2218, 21ifeq12d 4497 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁))
23 ifid 4516 . . . . . 6 if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁) = 𝑁
2422, 23eqtrdi 2782 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = 𝑁)
2517, 24breqtrd 5117 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ 𝑁)
26 eqid 2731 . . . . . . . . 9 (coeff‘𝐹) = (coeff‘𝐹)
27 eqid 2731 . . . . . . . . 9 (coeff‘𝐺) = (coeff‘𝐺)
2826, 27coesub 26187 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
2910, 12, 28syl2an 596 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3029adantr 480 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3130fveq1d 6824 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁))
321nnnn0d 12439 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ0)
3326coef3 26162 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
3433ad2antrr 726 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹):ℕ0⟶ℂ)
3534ffnd 6652 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹) Fn ℕ0)
3627coef3 26162 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑇) → (coeff‘𝐺):ℕ0⟶ℂ)
3736ad2antlr 727 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺):ℕ0⟶ℂ)
3837ffnd 6652 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺) Fn ℕ0)
39 nn0ex 12384 . . . . . . . 8 0 ∈ V
4039a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ℕ0 ∈ V)
41 inidm 4177 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
42 simplr3 1218 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))
43 eqidd 2732 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐺)‘𝑁) = ((coeff‘𝐺)‘𝑁))
4435, 38, 40, 40, 41, 42, 43ofval 7621 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4532, 44mpdan 687 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4637, 32ffvelcdmd 7018 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
4746subidd 11457 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)) = 0)
4831, 45, 473eqtrd 2770 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = 0)
49 plysubcl 26152 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5010, 12, 49syl2an 596 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5150adantr 480 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (𝐹f𝐺) ∈ (Poly‘ℂ))
52 eqid 2731 . . . . . 6 (deg‘(𝐹f𝐺)) = (deg‘(𝐹f𝐺))
53 eqid 2731 . . . . . 6 (coeff‘(𝐹f𝐺)) = (coeff‘(𝐹f𝐺))
5452, 53dgrlt 26197 . . . . 5 (((𝐹f𝐺) ∈ (Poly‘ℂ) ∧ 𝑁 ∈ ℕ0) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5551, 32, 54syl2anc 584 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5625, 48, 55mpbir2and 713 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁))
5756ord 864 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (¬ (𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
588, 57pm2.61d 179 1 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4475   class class class wbr 5091  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  cc 11001  0cc0 11003   < clt 11143  cle 11144  cmin 11341  cn 12122  0cn0 12378  0𝑝c0p 25595  Polycply 26114  coeffccoe 26116  degcdgr 26117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-rlim 15393  df-sum 15591  df-0p 25596  df-ply 26118  df-coe 26120  df-dgr 26121
This theorem is referenced by:  mpaaeu  43182
  Copyright terms: Public domain W3C validator