Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgrsub2 Structured version   Visualization version   GIF version

Theorem dgrsub2 43092
Description: Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Hypothesis
Ref Expression
dgrsub2.a 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrsub2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)

Proof of Theorem dgrsub2
StepHypRef Expression
1 simpr2 1195 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ)
2 dgr0 26322 . . . . 5 (deg‘0𝑝) = 0
3 nngt0 12324 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
42, 3eqbrtrid 5201 . . . 4 (𝑁 ∈ ℕ → (deg‘0𝑝) < 𝑁)
5 fveq2 6920 . . . . 5 ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) = (deg‘0𝑝))
65breq1d 5176 . . . 4 ((𝐹f𝐺) = 0𝑝 → ((deg‘(𝐹f𝐺)) < 𝑁 ↔ (deg‘0𝑝) < 𝑁))
74, 6syl5ibrcom 247 . . 3 (𝑁 ∈ ℕ → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
81, 7syl 17 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
9 plyssc 26259 . . . . . . . 8 (Poly‘𝑆) ⊆ (Poly‘ℂ)
109sseli 4004 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
11 plyssc 26259 . . . . . . . 8 (Poly‘𝑇) ⊆ (Poly‘ℂ)
1211sseli 4004 . . . . . . 7 (𝐺 ∈ (Poly‘𝑇) → 𝐺 ∈ (Poly‘ℂ))
13 eqid 2740 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
14 eqid 2740 . . . . . . . 8 (deg‘𝐺) = (deg‘𝐺)
1513, 14dgrsub 26332 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1610, 12, 15syl2an 595 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1716adantr 480 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
18 simpr1 1194 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐺) = 𝑁)
19 dgrsub2.a . . . . . . . . 9 𝑁 = (deg‘𝐹)
2019eqcomi 2749 . . . . . . . 8 (deg‘𝐹) = 𝑁
2120a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐹) = 𝑁)
2218, 21ifeq12d 4569 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁))
23 ifid 4588 . . . . . 6 if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁) = 𝑁
2422, 23eqtrdi 2796 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = 𝑁)
2517, 24breqtrd 5192 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ 𝑁)
26 eqid 2740 . . . . . . . . 9 (coeff‘𝐹) = (coeff‘𝐹)
27 eqid 2740 . . . . . . . . 9 (coeff‘𝐺) = (coeff‘𝐺)
2826, 27coesub 26316 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
2910, 12, 28syl2an 595 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3029adantr 480 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3130fveq1d 6922 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁))
321nnnn0d 12613 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ0)
3326coef3 26291 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
3433ad2antrr 725 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹):ℕ0⟶ℂ)
3534ffnd 6748 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹) Fn ℕ0)
3627coef3 26291 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑇) → (coeff‘𝐺):ℕ0⟶ℂ)
3736ad2antlr 726 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺):ℕ0⟶ℂ)
3837ffnd 6748 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺) Fn ℕ0)
39 nn0ex 12559 . . . . . . . 8 0 ∈ V
4039a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ℕ0 ∈ V)
41 inidm 4248 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
42 simplr3 1217 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))
43 eqidd 2741 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐺)‘𝑁) = ((coeff‘𝐺)‘𝑁))
4435, 38, 40, 40, 41, 42, 43ofval 7725 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4532, 44mpdan 686 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4637, 32ffvelcdmd 7119 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
4746subidd 11635 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)) = 0)
4831, 45, 473eqtrd 2784 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = 0)
49 plysubcl 26281 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5010, 12, 49syl2an 595 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5150adantr 480 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (𝐹f𝐺) ∈ (Poly‘ℂ))
52 eqid 2740 . . . . . 6 (deg‘(𝐹f𝐺)) = (deg‘(𝐹f𝐺))
53 eqid 2740 . . . . . 6 (coeff‘(𝐹f𝐺)) = (coeff‘(𝐹f𝐺))
5452, 53dgrlt 26326 . . . . 5 (((𝐹f𝐺) ∈ (Poly‘ℂ) ∧ 𝑁 ∈ ℕ0) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5551, 32, 54syl2anc 583 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5625, 48, 55mpbir2and 712 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁))
5756ord 863 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (¬ (𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
588, 57pm2.61d 179 1 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  ifcif 4548   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  0cc0 11184   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  0𝑝c0p 25723  Polycply 26243  coeffccoe 26245  degcdgr 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-coe 26249  df-dgr 26250
This theorem is referenced by:  mpaaeu  43107
  Copyright terms: Public domain W3C validator