Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgrsub2 Structured version   Visualization version   GIF version

Theorem dgrsub2 40957
Description: Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Hypothesis
Ref Expression
dgrsub2.a 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrsub2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)

Proof of Theorem dgrsub2
StepHypRef Expression
1 simpr2 1194 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ)
2 dgr0 25421 . . . . 5 (deg‘0𝑝) = 0
3 nngt0 12004 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
42, 3eqbrtrid 5114 . . . 4 (𝑁 ∈ ℕ → (deg‘0𝑝) < 𝑁)
5 fveq2 6771 . . . . 5 ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) = (deg‘0𝑝))
65breq1d 5089 . . . 4 ((𝐹f𝐺) = 0𝑝 → ((deg‘(𝐹f𝐺)) < 𝑁 ↔ (deg‘0𝑝) < 𝑁))
74, 6syl5ibrcom 246 . . 3 (𝑁 ∈ ℕ → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
81, 7syl 17 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
9 plyssc 25359 . . . . . . . 8 (Poly‘𝑆) ⊆ (Poly‘ℂ)
109sseli 3922 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
11 plyssc 25359 . . . . . . . 8 (Poly‘𝑇) ⊆ (Poly‘ℂ)
1211sseli 3922 . . . . . . 7 (𝐺 ∈ (Poly‘𝑇) → 𝐺 ∈ (Poly‘ℂ))
13 eqid 2740 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
14 eqid 2740 . . . . . . . 8 (deg‘𝐺) = (deg‘𝐺)
1513, 14dgrsub 25431 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1610, 12, 15syl2an 596 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1716adantr 481 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
18 simpr1 1193 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐺) = 𝑁)
19 dgrsub2.a . . . . . . . . 9 𝑁 = (deg‘𝐹)
2019eqcomi 2749 . . . . . . . 8 (deg‘𝐹) = 𝑁
2120a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐹) = 𝑁)
2218, 21ifeq12d 4486 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁))
23 ifid 4505 . . . . . 6 if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁) = 𝑁
2422, 23eqtrdi 2796 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = 𝑁)
2517, 24breqtrd 5105 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ 𝑁)
26 eqid 2740 . . . . . . . . 9 (coeff‘𝐹) = (coeff‘𝐹)
27 eqid 2740 . . . . . . . . 9 (coeff‘𝐺) = (coeff‘𝐺)
2826, 27coesub 25416 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
2910, 12, 28syl2an 596 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3029adantr 481 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3130fveq1d 6773 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁))
321nnnn0d 12293 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ0)
3326coef3 25391 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
3433ad2antrr 723 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹):ℕ0⟶ℂ)
3534ffnd 6599 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹) Fn ℕ0)
3627coef3 25391 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑇) → (coeff‘𝐺):ℕ0⟶ℂ)
3736ad2antlr 724 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺):ℕ0⟶ℂ)
3837ffnd 6599 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺) Fn ℕ0)
39 nn0ex 12239 . . . . . . . 8 0 ∈ V
4039a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ℕ0 ∈ V)
41 inidm 4158 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
42 simplr3 1216 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))
43 eqidd 2741 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐺)‘𝑁) = ((coeff‘𝐺)‘𝑁))
4435, 38, 40, 40, 41, 42, 43ofval 7538 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4532, 44mpdan 684 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4637, 32ffvelrnd 6959 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
4746subidd 11320 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)) = 0)
4831, 45, 473eqtrd 2784 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = 0)
49 plysubcl 25381 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5010, 12, 49syl2an 596 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5150adantr 481 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (𝐹f𝐺) ∈ (Poly‘ℂ))
52 eqid 2740 . . . . . 6 (deg‘(𝐹f𝐺)) = (deg‘(𝐹f𝐺))
53 eqid 2740 . . . . . 6 (coeff‘(𝐹f𝐺)) = (coeff‘(𝐹f𝐺))
5452, 53dgrlt 25425 . . . . 5 (((𝐹f𝐺) ∈ (Poly‘ℂ) ∧ 𝑁 ∈ ℕ0) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5551, 32, 54syl2anc 584 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5625, 48, 55mpbir2and 710 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁))
5756ord 861 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (¬ (𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
588, 57pm2.61d 179 1 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  Vcvv 3431  ifcif 4465   class class class wbr 5079  wf 6428  cfv 6432  (class class class)co 7271  f cof 7525  cc 10870  0cc0 10872   < clt 11010  cle 11011  cmin 11205  cn 11973  0cn0 12233  0𝑝c0p 24831  Polycply 25343  coeffccoe 25345  degcdgr 25346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-0p 24832  df-ply 25347  df-coe 25349  df-dgr 25350
This theorem is referenced by:  mpaaeu  40972
  Copyright terms: Public domain W3C validator