Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgrsub2 Structured version   Visualization version   GIF version

Theorem dgrsub2 39755
Description: Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Hypothesis
Ref Expression
dgrsub2.a 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrsub2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)

Proof of Theorem dgrsub2
StepHypRef Expression
1 simpr2 1191 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ)
2 dgr0 24852 . . . . 5 (deg‘0𝑝) = 0
3 nngt0 11669 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
42, 3eqbrtrid 5101 . . . 4 (𝑁 ∈ ℕ → (deg‘0𝑝) < 𝑁)
5 fveq2 6670 . . . . 5 ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) = (deg‘0𝑝))
65breq1d 5076 . . . 4 ((𝐹f𝐺) = 0𝑝 → ((deg‘(𝐹f𝐺)) < 𝑁 ↔ (deg‘0𝑝) < 𝑁))
74, 6syl5ibrcom 249 . . 3 (𝑁 ∈ ℕ → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
81, 7syl 17 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
9 plyssc 24790 . . . . . . . 8 (Poly‘𝑆) ⊆ (Poly‘ℂ)
109sseli 3963 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
11 plyssc 24790 . . . . . . . 8 (Poly‘𝑇) ⊆ (Poly‘ℂ)
1211sseli 3963 . . . . . . 7 (𝐺 ∈ (Poly‘𝑇) → 𝐺 ∈ (Poly‘ℂ))
13 eqid 2821 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
14 eqid 2821 . . . . . . . 8 (deg‘𝐺) = (deg‘𝐺)
1513, 14dgrsub 24862 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1610, 12, 15syl2an 597 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1716adantr 483 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
18 simpr1 1190 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐺) = 𝑁)
19 dgrsub2.a . . . . . . . . 9 𝑁 = (deg‘𝐹)
2019eqcomi 2830 . . . . . . . 8 (deg‘𝐹) = 𝑁
2120a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐹) = 𝑁)
2218, 21ifeq12d 4487 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁))
23 ifid 4506 . . . . . 6 if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁) = 𝑁
2422, 23syl6eq 2872 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = 𝑁)
2517, 24breqtrd 5092 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ 𝑁)
26 eqid 2821 . . . . . . . . 9 (coeff‘𝐹) = (coeff‘𝐹)
27 eqid 2821 . . . . . . . . 9 (coeff‘𝐺) = (coeff‘𝐺)
2826, 27coesub 24847 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
2910, 12, 28syl2an 597 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3029adantr 483 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3130fveq1d 6672 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁))
321nnnn0d 11956 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ0)
3326coef3 24822 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
3433ad2antrr 724 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹):ℕ0⟶ℂ)
3534ffnd 6515 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹) Fn ℕ0)
3627coef3 24822 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑇) → (coeff‘𝐺):ℕ0⟶ℂ)
3736ad2antlr 725 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺):ℕ0⟶ℂ)
3837ffnd 6515 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺) Fn ℕ0)
39 nn0ex 11904 . . . . . . . 8 0 ∈ V
4039a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ℕ0 ∈ V)
41 inidm 4195 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
42 simplr3 1213 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))
43 eqidd 2822 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐺)‘𝑁) = ((coeff‘𝐺)‘𝑁))
4435, 38, 40, 40, 41, 42, 43ofval 7418 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4532, 44mpdan 685 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4637, 32ffvelrnd 6852 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
4746subidd 10985 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)) = 0)
4831, 45, 473eqtrd 2860 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = 0)
49 plysubcl 24812 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5010, 12, 49syl2an 597 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5150adantr 483 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (𝐹f𝐺) ∈ (Poly‘ℂ))
52 eqid 2821 . . . . . 6 (deg‘(𝐹f𝐺)) = (deg‘(𝐹f𝐺))
53 eqid 2821 . . . . . 6 (coeff‘(𝐹f𝐺)) = (coeff‘(𝐹f𝐺))
5452, 53dgrlt 24856 . . . . 5 (((𝐹f𝐺) ∈ (Poly‘ℂ) ∧ 𝑁 ∈ ℕ0) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5551, 32, 54syl2anc 586 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5625, 48, 55mpbir2and 711 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁))
5756ord 860 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (¬ (𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
588, 57pm2.61d 181 1 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  ifcif 4467   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  0cc0 10537   < clt 10675  cle 10676  cmin 10870  cn 11638  0cn0 11898  0𝑝c0p 24270  Polycply 24774  coeffccoe 24776  degcdgr 24777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-0p 24271  df-ply 24778  df-coe 24780  df-dgr 24781
This theorem is referenced by:  mpaaeu  39770
  Copyright terms: Public domain W3C validator