Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgrsub2 Structured version   Visualization version   GIF version

Theorem dgrsub2 43147
Description: Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Hypothesis
Ref Expression
dgrsub2.a 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrsub2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)

Proof of Theorem dgrsub2
StepHypRef Expression
1 simpr2 1196 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ)
2 dgr0 26302 . . . . 5 (deg‘0𝑝) = 0
3 nngt0 12297 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
42, 3eqbrtrid 5178 . . . 4 (𝑁 ∈ ℕ → (deg‘0𝑝) < 𝑁)
5 fveq2 6906 . . . . 5 ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) = (deg‘0𝑝))
65breq1d 5153 . . . 4 ((𝐹f𝐺) = 0𝑝 → ((deg‘(𝐹f𝐺)) < 𝑁 ↔ (deg‘0𝑝) < 𝑁))
74, 6syl5ibrcom 247 . . 3 (𝑁 ∈ ℕ → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
81, 7syl 17 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
9 plyssc 26239 . . . . . . . 8 (Poly‘𝑆) ⊆ (Poly‘ℂ)
109sseli 3979 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
11 plyssc 26239 . . . . . . . 8 (Poly‘𝑇) ⊆ (Poly‘ℂ)
1211sseli 3979 . . . . . . 7 (𝐺 ∈ (Poly‘𝑇) → 𝐺 ∈ (Poly‘ℂ))
13 eqid 2737 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
14 eqid 2737 . . . . . . . 8 (deg‘𝐺) = (deg‘𝐺)
1513, 14dgrsub 26312 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1610, 12, 15syl2an 596 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
1716adantr 480 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)))
18 simpr1 1195 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐺) = 𝑁)
19 dgrsub2.a . . . . . . . . 9 𝑁 = (deg‘𝐹)
2019eqcomi 2746 . . . . . . . 8 (deg‘𝐹) = 𝑁
2120a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘𝐹) = 𝑁)
2218, 21ifeq12d 4547 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁))
23 ifid 4566 . . . . . 6 if((deg‘𝐹) ≤ (deg‘𝐺), 𝑁, 𝑁) = 𝑁
2422, 23eqtrdi 2793 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → if((deg‘𝐹) ≤ (deg‘𝐺), (deg‘𝐺), (deg‘𝐹)) = 𝑁)
2517, 24breqtrd 5169 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) ≤ 𝑁)
26 eqid 2737 . . . . . . . . 9 (coeff‘𝐹) = (coeff‘𝐹)
27 eqid 2737 . . . . . . . . 9 (coeff‘𝐺) = (coeff‘𝐺)
2826, 27coesub 26296 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
2910, 12, 28syl2an 596 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3029adantr 480 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘(𝐹f𝐺)) = ((coeff‘𝐹) ∘f − (coeff‘𝐺)))
3130fveq1d 6908 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁))
321nnnn0d 12587 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → 𝑁 ∈ ℕ0)
3326coef3 26271 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
3433ad2antrr 726 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹):ℕ0⟶ℂ)
3534ffnd 6737 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐹) Fn ℕ0)
3627coef3 26271 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑇) → (coeff‘𝐺):ℕ0⟶ℂ)
3736ad2antlr 727 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺):ℕ0⟶ℂ)
3837ffnd 6737 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (coeff‘𝐺) Fn ℕ0)
39 nn0ex 12532 . . . . . . . 8 0 ∈ V
4039a1i 11 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ℕ0 ∈ V)
41 inidm 4227 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
42 simplr3 1218 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))
43 eqidd 2738 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐺)‘𝑁) = ((coeff‘𝐺)‘𝑁))
4435, 38, 40, 40, 41, 42, 43ofval 7708 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4532, 44mpdan 687 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐹) ∘f − (coeff‘𝐺))‘𝑁) = (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)))
4637, 32ffvelcdmd 7105 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
4746subidd 11608 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((coeff‘𝐺)‘𝑁) − ((coeff‘𝐺)‘𝑁)) = 0)
4831, 45, 473eqtrd 2781 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((coeff‘(𝐹f𝐺))‘𝑁) = 0)
49 plysubcl 26261 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5010, 12, 49syl2an 596 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) → (𝐹f𝐺) ∈ (Poly‘ℂ))
5150adantr 480 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (𝐹f𝐺) ∈ (Poly‘ℂ))
52 eqid 2737 . . . . . 6 (deg‘(𝐹f𝐺)) = (deg‘(𝐹f𝐺))
53 eqid 2737 . . . . . 6 (coeff‘(𝐹f𝐺)) = (coeff‘(𝐹f𝐺))
5452, 53dgrlt 26306 . . . . 5 (((𝐹f𝐺) ∈ (Poly‘ℂ) ∧ 𝑁 ∈ ℕ0) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5551, 32, 54syl2anc 584 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁) ↔ ((deg‘(𝐹f𝐺)) ≤ 𝑁 ∧ ((coeff‘(𝐹f𝐺))‘𝑁) = 0)))
5625, 48, 55mpbir2and 713 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → ((𝐹f𝐺) = 0𝑝 ∨ (deg‘(𝐹f𝐺)) < 𝑁))
5756ord 865 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (¬ (𝐹f𝐺) = 0𝑝 → (deg‘(𝐹f𝐺)) < 𝑁))
588, 57pm2.61d 179 1 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹f𝐺)) < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  ifcif 4525   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  0cc0 11155   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  0𝑝c0p 25704  Polycply 26223  coeffccoe 26225  degcdgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-0p 25705  df-ply 26227  df-coe 26229  df-dgr 26230
This theorem is referenced by:  mpaaeu  43162
  Copyright terms: Public domain W3C validator