Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elnei | Structured version Visualization version GIF version |
Description: A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.) |
Ref | Expression |
---|---|
elnei | ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnei 22169 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → {𝑃} ⊆ 𝑁) | |
2 | 1 | 3adant2 1129 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → {𝑃} ⊆ 𝑁) |
3 | snssg 4715 | . . 3 ⊢ (𝑃 ∈ 𝐴 → (𝑃 ∈ 𝑁 ↔ {𝑃} ⊆ 𝑁)) | |
4 | 3 | 3ad2ant2 1132 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑃 ∈ 𝑁 ↔ {𝑃} ⊆ 𝑁)) |
5 | 2, 4 | mpbird 256 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 ‘cfv 6418 Topctop 21950 neicnei 22156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-nei 22157 |
This theorem is referenced by: gneispa 41629 |
Copyright terms: Public domain | W3C validator |