MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnei Structured version   Visualization version   GIF version

Theorem ssnei 21863
Description: A set is included in any of its neighborhoods. Generalization to subsets of elnei 21864. (Contributed by FL, 16-Nov-2006.)
Assertion
Ref Expression
ssnei ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)

Proof of Theorem ssnei
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neii2 21861 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
2 sstr 3885 . . 3 ((𝑆𝑔𝑔𝑁) → 𝑆𝑁)
32rexlimivw 3192 . 2 (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → 𝑆𝑁)
41, 3syl 17 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  wrex 3054  wss 3843  cfv 6339  Topctop 21646  neicnei 21850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-top 21647  df-nei 21851
This theorem is referenced by:  elnei  21864  0nnei  21865  opnneissb  21867  opnssneib  21868  tpnei  21874  cvmlift2lem1  32837
  Copyright terms: Public domain W3C validator