MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnei Structured version   Visualization version   GIF version

Theorem ssnei 22583
Description: A set is included in any of its neighborhoods. Generalization to subsets of elnei 22584. (Contributed by FL, 16-Nov-2006.)
Assertion
Ref Expression
ssnei ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)

Proof of Theorem ssnei
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neii2 22581 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
2 sstr 3988 . . 3 ((𝑆𝑔𝑔𝑁) → 𝑆𝑁)
32rexlimivw 3152 . 2 (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → 𝑆𝑁)
41, 3syl 17 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wrex 3071  wss 3946  cfv 6535  Topctop 22364  neicnei 22570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-top 22365  df-nei 22571
This theorem is referenced by:  elnei  22584  0nnei  22585  opnneissb  22587  opnssneib  22588  tpnei  22594  cvmlift2lem1  34224
  Copyright terms: Public domain W3C validator