| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispa | Structured version Visualization version GIF version | ||
| Description: Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
| Ref | Expression |
|---|---|
| gneispace.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| gneispa | ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4775 | . . . . . 6 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ⊆ 𝑋) | |
| 2 | gneispace.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | tpnei 23015 | . . . . . 6 ⊢ (𝐽 ∈ Top → ({𝑝} ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘{𝑝}))) |
| 4 | 1, 3 | imbitrid 244 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑝 ∈ 𝑋 → 𝑋 ∈ ((nei‘𝐽)‘{𝑝}))) |
| 5 | 4 | imp 406 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝑝})) |
| 6 | 5 | ne0d 4308 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → ((nei‘𝐽)‘{𝑝}) ≠ ∅) |
| 7 | elnei 23005 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑝})) → 𝑝 ∈ 𝑛) | |
| 8 | 7 | 3expia 1121 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑝 ∈ 𝑛)) |
| 9 | 8 | ralrimiv 3125 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛) |
| 10 | 6, 9 | jca 511 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) |
| 11 | 10 | ralrimiva 3126 | 1 ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⊆ wss 3917 ∅c0 4299 {csn 4592 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 neicnei 22991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-top 22788 df-nei 22992 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |