Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispa Structured version   Visualization version   GIF version

Theorem gneispa 42866
Description: Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.)
Hypothesis
Ref Expression
gneispace.x 𝑋 = 𝐽
Assertion
Ref Expression
gneispa (𝐽 ∈ Top → ∀𝑝𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝𝑛))
Distinct variable groups:   𝑛,𝐽,𝑝   𝑛,𝑋
Allowed substitution hint:   𝑋(𝑝)

Proof of Theorem gneispa
StepHypRef Expression
1 snssi 4810 . . . . . 6 (𝑝𝑋 → {𝑝} ⊆ 𝑋)
2 gneispace.x . . . . . . 7 𝑋 = 𝐽
32tpnei 22616 . . . . . 6 (𝐽 ∈ Top → ({𝑝} ⊆ 𝑋𝑋 ∈ ((nei‘𝐽)‘{𝑝})))
41, 3imbitrid 243 . . . . 5 (𝐽 ∈ Top → (𝑝𝑋𝑋 ∈ ((nei‘𝐽)‘{𝑝})))
54imp 407 . . . 4 ((𝐽 ∈ Top ∧ 𝑝𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝑝}))
65ne0d 4334 . . 3 ((𝐽 ∈ Top ∧ 𝑝𝑋) → ((nei‘𝐽)‘{𝑝}) ≠ ∅)
7 elnei 22606 . . . . 5 ((𝐽 ∈ Top ∧ 𝑝𝑋𝑛 ∈ ((nei‘𝐽)‘{𝑝})) → 𝑝𝑛)
873expia 1121 . . . 4 ((𝐽 ∈ Top ∧ 𝑝𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑝𝑛))
98ralrimiv 3145 . . 3 ((𝐽 ∈ Top ∧ 𝑝𝑋) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝𝑛)
106, 9jca 512 . 2 ((𝐽 ∈ Top ∧ 𝑝𝑋) → (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝𝑛))
1110ralrimiva 3146 1 (𝐽 ∈ Top → ∀𝑝𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  wss 3947  c0 4321  {csn 4627   cuni 4907  cfv 6540  Topctop 22386  neicnei 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-top 22387  df-nei 22593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator