| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispa | Structured version Visualization version GIF version | ||
| Description: Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
| Ref | Expression |
|---|---|
| gneispace.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| gneispa | ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4760 | . . . . . 6 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ⊆ 𝑋) | |
| 2 | gneispace.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | tpnei 23034 | . . . . . 6 ⊢ (𝐽 ∈ Top → ({𝑝} ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘{𝑝}))) |
| 4 | 1, 3 | imbitrid 244 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑝 ∈ 𝑋 → 𝑋 ∈ ((nei‘𝐽)‘{𝑝}))) |
| 5 | 4 | imp 406 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝑝})) |
| 6 | 5 | ne0d 4292 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → ((nei‘𝐽)‘{𝑝}) ≠ ∅) |
| 7 | elnei 23024 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑝})) → 𝑝 ∈ 𝑛) | |
| 8 | 7 | 3expia 1121 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑝 ∈ 𝑛)) |
| 9 | 8 | ralrimiv 3123 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛) |
| 10 | 6, 9 | jca 511 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) |
| 11 | 10 | ralrimiva 3124 | 1 ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3902 ∅c0 4283 {csn 4576 ∪ cuni 4859 ‘cfv 6481 Topctop 22806 neicnei 23010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22807 df-nei 23011 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |