![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispa | Structured version Visualization version GIF version |
Description: Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
Ref | Expression |
---|---|
gneispace.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
gneispa | ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4816 | . . . . . 6 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ⊆ 𝑋) | |
2 | gneispace.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | tpnei 23127 | . . . . . 6 ⊢ (𝐽 ∈ Top → ({𝑝} ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘{𝑝}))) |
4 | 1, 3 | imbitrid 244 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑝 ∈ 𝑋 → 𝑋 ∈ ((nei‘𝐽)‘{𝑝}))) |
5 | 4 | imp 406 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝑝})) |
6 | 5 | ne0d 4348 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → ((nei‘𝐽)‘{𝑝}) ≠ ∅) |
7 | elnei 23117 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑝})) → 𝑝 ∈ 𝑛) | |
8 | 7 | 3expia 1119 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑝 ∈ 𝑛)) |
9 | 8 | ralrimiv 3141 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛) |
10 | 6, 9 | jca 511 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) |
11 | 10 | ralrimiva 3142 | 1 ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1535 ∈ wcel 2104 ≠ wne 2936 ∀wral 3057 ⊆ wss 3963 ∅c0 4339 {csn 4631 ∪ cuni 4915 ‘cfv 6559 Topctop 22897 neicnei 23103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4916 df-iun 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6511 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-top 22898 df-nei 23104 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |