Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispa Structured version   Visualization version   GIF version

Theorem gneispa 42871
Description: Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.)
Hypothesis
Ref Expression
gneispace.x 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
gneispa (𝐽 ∈ Top β†’ βˆ€π‘ ∈ 𝑋 (((neiβ€˜π½)β€˜{𝑝}) β‰  βˆ… ∧ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑝})𝑝 ∈ 𝑛))
Distinct variable groups:   𝑛,𝐽,𝑝   𝑛,𝑋
Allowed substitution hint:   𝑋(𝑝)

Proof of Theorem gneispa
StepHypRef Expression
1 snssi 4811 . . . . . 6 (𝑝 ∈ 𝑋 β†’ {𝑝} βŠ† 𝑋)
2 gneispace.x . . . . . . 7 𝑋 = βˆͺ 𝐽
32tpnei 22624 . . . . . 6 (𝐽 ∈ Top β†’ ({𝑝} βŠ† 𝑋 ↔ 𝑋 ∈ ((neiβ€˜π½)β€˜{𝑝})))
41, 3imbitrid 243 . . . . 5 (𝐽 ∈ Top β†’ (𝑝 ∈ 𝑋 β†’ 𝑋 ∈ ((neiβ€˜π½)β€˜{𝑝})))
54imp 407 . . . 4 ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 ∈ ((neiβ€˜π½)β€˜{𝑝}))
65ne0d 4335 . . 3 ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) β†’ ((neiβ€˜π½)β€˜{𝑝}) β‰  βˆ…)
7 elnei 22614 . . . . 5 ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋 ∧ 𝑛 ∈ ((neiβ€˜π½)β€˜{𝑝})) β†’ 𝑝 ∈ 𝑛)
873expia 1121 . . . 4 ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) β†’ (𝑛 ∈ ((neiβ€˜π½)β€˜{𝑝}) β†’ 𝑝 ∈ 𝑛))
98ralrimiv 3145 . . 3 ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) β†’ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑝})𝑝 ∈ 𝑛)
106, 9jca 512 . 2 ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) β†’ (((neiβ€˜π½)β€˜{𝑝}) β‰  βˆ… ∧ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑝})𝑝 ∈ 𝑛))
1110ralrimiva 3146 1 (𝐽 ∈ Top β†’ βˆ€π‘ ∈ 𝑋 (((neiβ€˜π½)β€˜{𝑝}) β‰  βˆ… ∧ βˆ€π‘› ∈ ((neiβ€˜π½)β€˜{𝑝})𝑝 ∈ 𝑛))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βŠ† wss 3948  βˆ…c0 4322  {csn 4628  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22394  neicnei 22600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22395  df-nei 22601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator