Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispa Structured version   Visualization version   GIF version

Theorem gneispa 44247
Description: Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.)
Hypothesis
Ref Expression
gneispace.x 𝑋 = 𝐽
Assertion
Ref Expression
gneispa (𝐽 ∈ Top → ∀𝑝𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝𝑛))
Distinct variable groups:   𝑛,𝐽,𝑝   𝑛,𝑋
Allowed substitution hint:   𝑋(𝑝)

Proof of Theorem gneispa
StepHypRef Expression
1 snssi 4759 . . . . . 6 (𝑝𝑋 → {𝑝} ⊆ 𝑋)
2 gneispace.x . . . . . . 7 𝑋 = 𝐽
32tpnei 23037 . . . . . 6 (𝐽 ∈ Top → ({𝑝} ⊆ 𝑋𝑋 ∈ ((nei‘𝐽)‘{𝑝})))
41, 3imbitrid 244 . . . . 5 (𝐽 ∈ Top → (𝑝𝑋𝑋 ∈ ((nei‘𝐽)‘{𝑝})))
54imp 406 . . . 4 ((𝐽 ∈ Top ∧ 𝑝𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝑝}))
65ne0d 4291 . . 3 ((𝐽 ∈ Top ∧ 𝑝𝑋) → ((nei‘𝐽)‘{𝑝}) ≠ ∅)
7 elnei 23027 . . . . 5 ((𝐽 ∈ Top ∧ 𝑝𝑋𝑛 ∈ ((nei‘𝐽)‘{𝑝})) → 𝑝𝑛)
873expia 1121 . . . 4 ((𝐽 ∈ Top ∧ 𝑝𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑝𝑛))
98ralrimiv 3124 . . 3 ((𝐽 ∈ Top ∧ 𝑝𝑋) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝𝑛)
106, 9jca 511 . 2 ((𝐽 ∈ Top ∧ 𝑝𝑋) → (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝𝑛))
1110ralrimiva 3125 1 (𝐽 ∈ Top → ∀𝑝𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wss 3898  c0 4282  {csn 4575   cuni 4858  cfv 6486  Topctop 22809  neicnei 23013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22810  df-nei 23014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator