Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  invpropdlem Structured version   Visualization version   GIF version

Theorem invpropdlem 48912
Description: Lemma for invpropd 48913. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
sectpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
sectpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
invpropdlem ((𝜑𝑃 ∈ (Inv‘𝐶)) → 𝑃 ∈ (Inv‘𝐷))

Proof of Theorem invpropdlem
Dummy variables 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑃 ∈ (Inv‘𝐶)) → 𝑃 ∈ (Inv‘𝐶))
2 eqid 2734 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2734 . . . . . 6 (Inv‘𝐶) = (Inv‘𝐶)
4 df-inv 17764 . . . . . . . 8 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
54mptrcl 7005 . . . . . . 7 (𝑃 ∈ (Inv‘𝐶) → 𝐶 ∈ Cat)
65adantl 481 . . . . . 6 ((𝜑𝑃 ∈ (Inv‘𝐶)) → 𝐶 ∈ Cat)
7 eqid 2734 . . . . . 6 (Sect‘𝐶) = (Sect‘𝐶)
82, 3, 6, 7invffval 17774 . . . . 5 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (Inv‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
9 df-mpo 7418 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))}
108, 9eqtrdi 2785 . . . 4 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (Inv‘𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))})
111, 10eleqtrd 2835 . . 3 ((𝜑𝑃 ∈ (Inv‘𝐶)) → 𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))})
12 eloprab1st2nd 48751 . . 3 (𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))} → 𝑃 = ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩)
1311, 12syl 17 . 2 ((𝜑𝑃 ∈ (Inv‘𝐶)) → 𝑃 = ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩)
14 sectpropd.1 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
1514adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (Homf𝐶) = (Homf𝐷))
16 sectpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
1716adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (compf𝐶) = (compf𝐷))
1815, 17sectpropd 48911 . . . . . . 7 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (Sect‘𝐶) = (Sect‘𝐷))
1918oveqd 7430 . . . . . 6 ((𝜑𝑃 ∈ (Inv‘𝐶)) → ((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) = ((1st ‘(1st𝑃))(Sect‘𝐷)(2nd ‘(1st𝑃))))
2018oveqd 7430 . . . . . . 7 ((𝜑𝑃 ∈ (Inv‘𝐶)) → ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃))) = ((2nd ‘(1st𝑃))(Sect‘𝐷)(1st ‘(1st𝑃))))
2120cnveqd 5866 . . . . . 6 ((𝜑𝑃 ∈ (Inv‘𝐶)) → ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃))) = ((2nd ‘(1st𝑃))(Sect‘𝐷)(1st ‘(1st𝑃))))
2219, 21ineq12d 4201 . . . . 5 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃)))) = (((1st ‘(1st𝑃))(Sect‘𝐷)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐷)(1st ‘(1st𝑃)))))
23 eleq1 2821 . . . . . . . . . 10 (𝑥 = (1st ‘(1st𝑃)) → (𝑥 ∈ (Base‘𝐶) ↔ (1st ‘(1st𝑃)) ∈ (Base‘𝐶)))
2423anbi1d 631 . . . . . . . . 9 (𝑥 = (1st ‘(1st𝑃)) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ ((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))))
25 oveq1 7420 . . . . . . . . . . 11 (𝑥 = (1st ‘(1st𝑃)) → (𝑥(Sect‘𝐶)𝑦) = ((1st ‘(1st𝑃))(Sect‘𝐶)𝑦))
26 oveq2 7421 . . . . . . . . . . . 12 (𝑥 = (1st ‘(1st𝑃)) → (𝑦(Sect‘𝐶)𝑥) = (𝑦(Sect‘𝐶)(1st ‘(1st𝑃))))
2726cnveqd 5866 . . . . . . . . . . 11 (𝑥 = (1st ‘(1st𝑃)) → (𝑦(Sect‘𝐶)𝑥) = (𝑦(Sect‘𝐶)(1st ‘(1st𝑃))))
2825, 27ineq12d 4201 . . . . . . . . . 10 (𝑥 = (1st ‘(1st𝑃)) → ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) = (((1st ‘(1st𝑃))(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)(1st ‘(1st𝑃)))))
2928eqeq2d 2745 . . . . . . . . 9 (𝑥 = (1st ‘(1st𝑃)) → (𝑧 = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ↔ 𝑧 = (((1st ‘(1st𝑃))(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)(1st ‘(1st𝑃))))))
3024, 29anbi12d 632 . . . . . . . 8 (𝑥 = (1st ‘(1st𝑃)) → (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = (((1st ‘(1st𝑃))(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)(1st ‘(1st𝑃)))))))
31 eleq1 2821 . . . . . . . . . 10 (𝑦 = (2nd ‘(1st𝑃)) → (𝑦 ∈ (Base‘𝐶) ↔ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)))
3231anbi2d 630 . . . . . . . . 9 (𝑦 = (2nd ‘(1st𝑃)) → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ ((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶))))
33 oveq2 7421 . . . . . . . . . . 11 (𝑦 = (2nd ‘(1st𝑃)) → ((1st ‘(1st𝑃))(Sect‘𝐶)𝑦) = ((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))))
34 oveq1 7420 . . . . . . . . . . . 12 (𝑦 = (2nd ‘(1st𝑃)) → (𝑦(Sect‘𝐶)(1st ‘(1st𝑃))) = ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃))))
3534cnveqd 5866 . . . . . . . . . . 11 (𝑦 = (2nd ‘(1st𝑃)) → (𝑦(Sect‘𝐶)(1st ‘(1st𝑃))) = ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃))))
3633, 35ineq12d 4201 . . . . . . . . . 10 (𝑦 = (2nd ‘(1st𝑃)) → (((1st ‘(1st𝑃))(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)(1st ‘(1st𝑃)))) = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃)))))
3736eqeq2d 2745 . . . . . . . . 9 (𝑦 = (2nd ‘(1st𝑃)) → (𝑧 = (((1st ‘(1st𝑃))(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)(1st ‘(1st𝑃)))) ↔ 𝑧 = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃))))))
3832, 37anbi12d 632 . . . . . . . 8 (𝑦 = (2nd ‘(1st𝑃)) → ((((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = (((1st ‘(1st𝑃))(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)(1st ‘(1st𝑃))))) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ 𝑧 = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃)))))))
39 eqeq1 2738 . . . . . . . . 9 (𝑧 = (2nd𝑃) → (𝑧 = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃)))) ↔ (2nd𝑃) = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃))))))
4039anbi2d 630 . . . . . . . 8 (𝑧 = (2nd𝑃) → ((((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ 𝑧 = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃))))) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃)))))))
4130, 38, 40eloprabi 8070 . . . . . . 7 (𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))} → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃))))))
4211, 41syl 17 . . . . . 6 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃))))))
4342simprd 495 . . . . 5 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (2nd𝑃) = (((1st ‘(1st𝑃))(Sect‘𝐶)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐶)(1st ‘(1st𝑃)))))
44 eqid 2734 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
45 eqid 2734 . . . . . 6 (Inv‘𝐷) = (Inv‘𝐷)
4642simplld 767 . . . . . . . . . 10 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (1st ‘(1st𝑃)) ∈ (Base‘𝐶))
4715homfeqbas 17711 . . . . . . . . . 10 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
4846, 47eleqtrd 2835 . . . . . . . . 9 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (1st ‘(1st𝑃)) ∈ (Base‘𝐷))
4948elfvexd 6925 . . . . . . . 8 ((𝜑𝑃 ∈ (Inv‘𝐶)) → 𝐷 ∈ V)
5015, 17, 6, 49catpropd 17724 . . . . . . 7 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
516, 50mpbid 232 . . . . . 6 ((𝜑𝑃 ∈ (Inv‘𝐶)) → 𝐷 ∈ Cat)
5242simplrd 769 . . . . . . 7 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (2nd ‘(1st𝑃)) ∈ (Base‘𝐶))
5352, 47eleqtrd 2835 . . . . . 6 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (2nd ‘(1st𝑃)) ∈ (Base‘𝐷))
54 eqid 2734 . . . . . 6 (Sect‘𝐷) = (Sect‘𝐷)
5544, 45, 51, 48, 53, 54invfval 17775 . . . . 5 ((𝜑𝑃 ∈ (Inv‘𝐶)) → ((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))) = (((1st ‘(1st𝑃))(Sect‘𝐷)(2nd ‘(1st𝑃))) ∩ ((2nd ‘(1st𝑃))(Sect‘𝐷)(1st ‘(1st𝑃)))))
5622, 43, 553eqtr4rd 2780 . . . 4 ((𝜑𝑃 ∈ (Inv‘𝐶)) → ((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃))
57 invfn 48907 . . . . . 6 (𝐷 ∈ Cat → (Inv‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
5851, 57syl 17 . . . . 5 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (Inv‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
59 fnbrovb 7464 . . . . 5 (((Inv‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ ((1st ‘(1st𝑃)) ∈ (Base‘𝐷) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐷))) → (((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃) ↔ ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Inv‘𝐷)(2nd𝑃)))
6058, 48, 53, 59syl12anc 836 . . . 4 ((𝜑𝑃 ∈ (Inv‘𝐶)) → (((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃) ↔ ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Inv‘𝐷)(2nd𝑃)))
6156, 60mpbid 232 . . 3 ((𝜑𝑃 ∈ (Inv‘𝐶)) → ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Inv‘𝐷)(2nd𝑃))
62 df-br 5124 . . 3 (⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Inv‘𝐷)(2nd𝑃) ↔ ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩ ∈ (Inv‘𝐷))
6361, 62sylib 218 . 2 ((𝜑𝑃 ∈ (Inv‘𝐶)) → ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩ ∈ (Inv‘𝐷))
6413, 63eqeltrd 2833 1 ((𝜑𝑃 ∈ (Inv‘𝐶)) → 𝑃 ∈ (Inv‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cin 3930  cop 4612   class class class wbr 5123   × cxp 5663  ccnv 5664   Fn wfn 6536  cfv 6541  (class class class)co 7413  {coprab 7414  cmpo 7415  1st c1st 7994  2nd c2nd 7995  Basecbs 17230  Catccat 17679  Homf chomf 17681  compfccomf 17682  Sectcsect 17760  Invcinv 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-cat 17683  df-cid 17684  df-homf 17685  df-comf 17686  df-sect 17763  df-inv 17764
This theorem is referenced by:  invpropd  48913
  Copyright terms: Public domain W3C validator