Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sectpropdlem Structured version   Visualization version   GIF version

Theorem sectpropdlem 49068
Description: Lemma for sectpropd 49069. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
sectpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
sectpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
sectpropdlem ((𝜑𝑃 ∈ (Sect‘𝐶)) → 𝑃 ∈ (Sect‘𝐷))

Proof of Theorem sectpropdlem
Dummy variables 𝑐 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑃 ∈ (Sect‘𝐶)) → 𝑃 ∈ (Sect‘𝐶))
2 eqid 2731 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2731 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2731 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
5 eqid 2731 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
6 eqid 2731 . . . . . 6 (Sect‘𝐶) = (Sect‘𝐶)
7 df-sect 17649 . . . . . . . 8 Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
87mptrcl 6933 . . . . . . 7 (𝑃 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat)
98adantl 481 . . . . . 6 ((𝜑𝑃 ∈ (Sect‘𝐶)) → 𝐶 ∈ Cat)
102, 3, 4, 5, 6, 9sectffval 17652 . . . . 5 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (Sect‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}))
11 df-mpo 7346 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})}
1210, 11eqtrdi 2782 . . . 4 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (Sect‘𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})})
131, 12eleqtrd 2833 . . 3 ((𝜑𝑃 ∈ (Sect‘𝐶)) → 𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})})
14 eloprab1st2nd 48899 . . 3 (𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})} → 𝑃 = ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩)
1513, 14syl 17 . 2 ((𝜑𝑃 ∈ (Sect‘𝐶)) → 𝑃 = ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩)
16 eqid 2731 . . . . . . . . . 10 (comp‘𝐷) = (comp‘𝐷)
17 sectpropd.1 . . . . . . . . . . . 12 (𝜑 → (Homf𝐶) = (Homf𝐷))
1817adantr 480 . . . . . . . . . . 11 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (Homf𝐶) = (Homf𝐷))
1918adantr 480 . . . . . . . . . 10 (((𝜑𝑃 ∈ (Sect‘𝐶)) ∧ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))) → (Homf𝐶) = (Homf𝐷))
20 sectpropd.2 . . . . . . . . . . . 12 (𝜑 → (compf𝐶) = (compf𝐷))
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (compf𝐶) = (compf𝐷))
2221adantr 480 . . . . . . . . . 10 (((𝜑𝑃 ∈ (Sect‘𝐶)) ∧ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))) → (compf𝐶) = (compf𝐷))
23 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑥 = (1st ‘(1st𝑃)) → (𝑥 ∈ (Base‘𝐶) ↔ (1st ‘(1st𝑃)) ∈ (Base‘𝐶)))
2423anbi1d 631 . . . . . . . . . . . . . . 15 (𝑥 = (1st ‘(1st𝑃)) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ ((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))))
25 oveq1 7348 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (1st ‘(1st𝑃)) → (𝑥(Hom ‘𝐶)𝑦) = ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦))
2625eleq2d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (1st ‘(1st𝑃)) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↔ 𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦)))
27 oveq2 7349 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (1st ‘(1st𝑃)) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃))))
2827eleq2d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (1st ‘(1st𝑃)) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↔ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))))
2926, 28anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1st ‘(1st𝑃)) → ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ↔ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃))))))
30 opeq1 4820 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (1st ‘(1st𝑃)) → ⟨𝑥, 𝑦⟩ = ⟨(1st ‘(1st𝑃)), 𝑦⟩)
31 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (1st ‘(1st𝑃)) → 𝑥 = (1st ‘(1st𝑃)))
3230, 31oveq12d 7359 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (1st ‘(1st𝑃)) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥) = (⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃))))
3332oveqd 7358 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (1st ‘(1st𝑃)) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓))
34 fveq2 6817 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (1st ‘(1st𝑃)) → ((Id‘𝐶)‘𝑥) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))
3533, 34eqeq12d 2747 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1st ‘(1st𝑃)) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥) ↔ (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃)))))
3629, 35anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st ‘(1st𝑃)) → (((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥)) ↔ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))))
3736opabbidv 5152 . . . . . . . . . . . . . . . 16 (𝑥 = (1st ‘(1st𝑃)) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))})
3837eqeq2d 2742 . . . . . . . . . . . . . . 15 (𝑥 = (1st ‘(1st𝑃)) → (𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} ↔ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))}))
3924, 38anbi12d 632 . . . . . . . . . . . . . 14 (𝑥 = (1st ‘(1st𝑃)) → (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))})))
40 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd ‘(1st𝑃)) → (𝑦 ∈ (Base‘𝐶) ↔ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)))
4140anbi2d 630 . . . . . . . . . . . . . . 15 (𝑦 = (2nd ‘(1st𝑃)) → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ ((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶))))
42 oveq2 7349 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (2nd ‘(1st𝑃)) → ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) = ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))))
4342eleq2d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (2nd ‘(1st𝑃)) → (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ↔ 𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃)))))
44 oveq1 7348 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (2nd ‘(1st𝑃)) → (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃))) = ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))
4544eleq2d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (2nd ‘(1st𝑃)) → (𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃))) ↔ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))))
4643, 45anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑦 = (2nd ‘(1st𝑃)) → ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))) ↔ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))))
47 opeq2 4821 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (2nd ‘(1st𝑃)) → ⟨(1st ‘(1st𝑃)), 𝑦⟩ = ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩)
4847oveq1d 7356 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (2nd ‘(1st𝑃)) → (⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃))) = (⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃))))
4948oveqd 7358 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (2nd ‘(1st𝑃)) → (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓))
5049eqeq1d 2733 . . . . . . . . . . . . . . . . . 18 (𝑦 = (2nd ‘(1st𝑃)) → ((𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))) ↔ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃)))))
5146, 50anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑦 = (2nd ‘(1st𝑃)) → (((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃)))) ↔ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))))
5251opabbidv 5152 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd ‘(1st𝑃)) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))})
5352eqeq2d 2742 . . . . . . . . . . . . . . 15 (𝑦 = (2nd ‘(1st𝑃)) → (𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))} ↔ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))}))
5441, 53anbi12d 632 . . . . . . . . . . . . . 14 (𝑦 = (2nd ‘(1st𝑃)) → ((((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), 𝑦⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))}) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))})))
55 eqeq1 2735 . . . . . . . . . . . . . . 15 (𝑧 = (2nd𝑃) → (𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))} ↔ (2nd𝑃) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))}))
5655anbi2d 630 . . . . . . . . . . . . . 14 (𝑧 = (2nd𝑃) → ((((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))}) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))})))
5739, 54, 56eloprabi 7990 . . . . . . . . . . . . 13 (𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})} → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))}))
5813, 57syl 17 . . . . . . . . . . . 12 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))}))
5958simplld 767 . . . . . . . . . . 11 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (1st ‘(1st𝑃)) ∈ (Base‘𝐶))
6059adantr 480 . . . . . . . . . 10 (((𝜑𝑃 ∈ (Sect‘𝐶)) ∧ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))) → (1st ‘(1st𝑃)) ∈ (Base‘𝐶))
6158simplrd 769 . . . . . . . . . . 11 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (2nd ‘(1st𝑃)) ∈ (Base‘𝐶))
6261adantr 480 . . . . . . . . . 10 (((𝜑𝑃 ∈ (Sect‘𝐶)) ∧ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))) → (2nd ‘(1st𝑃)) ∈ (Base‘𝐶))
63 simprl 770 . . . . . . . . . 10 (((𝜑𝑃 ∈ (Sect‘𝐶)) ∧ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))) → 𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))))
64 simprr 772 . . . . . . . . . 10 (((𝜑𝑃 ∈ (Sect‘𝐶)) ∧ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))) → 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))
652, 3, 4, 16, 19, 22, 60, 62, 60, 63, 64comfeqval 17609 . . . . . . . . 9 (((𝜑𝑃 ∈ (Sect‘𝐶)) ∧ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))) → (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐷)(1st ‘(1st𝑃)))𝑓))
6618homfeqbas 17597 . . . . . . . . . . . . . 14 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
6759, 66eleqtrd 2833 . . . . . . . . . . . . 13 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (1st ‘(1st𝑃)) ∈ (Base‘𝐷))
6867elfvexd 6853 . . . . . . . . . . . 12 ((𝜑𝑃 ∈ (Sect‘𝐶)) → 𝐷 ∈ V)
6918, 21, 9, 68cidpropd 17611 . . . . . . . . . . 11 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (Id‘𝐶) = (Id‘𝐷))
7069fveq1d 6819 . . . . . . . . . 10 ((𝜑𝑃 ∈ (Sect‘𝐶)) → ((Id‘𝐶)‘(1st ‘(1st𝑃))) = ((Id‘𝐷)‘(1st ‘(1st𝑃))))
7170adantr 480 . . . . . . . . 9 (((𝜑𝑃 ∈ (Sect‘𝐶)) ∧ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))) → ((Id‘𝐶)‘(1st ‘(1st𝑃))) = ((Id‘𝐷)‘(1st ‘(1st𝑃))))
7265, 71eqeq12d 2747 . . . . . . . 8 (((𝜑𝑃 ∈ (Sect‘𝐶)) ∧ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))))) → ((𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))) ↔ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐷)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐷)‘(1st ‘(1st𝑃)))))
7372pm5.32da 579 . . . . . . 7 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃)))) ↔ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐷)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐷)‘(1st ‘(1st𝑃))))))
74 eqid 2731 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
752, 3, 74, 18, 59, 61homfeqval 17598 . . . . . . . . . 10 ((𝜑𝑃 ∈ (Sect‘𝐶)) → ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) = ((1st ‘(1st𝑃))(Hom ‘𝐷)(2nd ‘(1st𝑃))))
7675eleq2d 2817 . . . . . . . . 9 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ↔ 𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐷)(2nd ‘(1st𝑃)))))
772, 3, 74, 18, 61, 59homfeqval 17598 . . . . . . . . . 10 ((𝜑𝑃 ∈ (Sect‘𝐶)) → ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))) = ((2nd ‘(1st𝑃))(Hom ‘𝐷)(1st ‘(1st𝑃))))
7877eleq2d 2817 . . . . . . . . 9 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃))) ↔ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐷)(1st ‘(1st𝑃)))))
7976, 78anbi12d 632 . . . . . . . 8 ((𝜑𝑃 ∈ (Sect‘𝐶)) → ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ↔ (𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐷)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐷)(1st ‘(1st𝑃))))))
8079anbi1d 631 . . . . . . 7 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐷)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐷)‘(1st ‘(1st𝑃)))) ↔ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐷)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐷)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐷)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐷)‘(1st ‘(1st𝑃))))))
8173, 80bitrd 279 . . . . . 6 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃)))) ↔ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐷)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐷)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐷)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐷)‘(1st ‘(1st𝑃))))))
8281opabbidv 5152 . . . . 5 ((𝜑𝑃 ∈ (Sect‘𝐶)) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐷)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐷)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐷)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐷)‘(1st ‘(1st𝑃))))})
8358simprd 495 . . . . 5 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (2nd𝑃) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐶)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐶)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐶)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐶)‘(1st ‘(1st𝑃))))})
84 eqid 2731 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
85 eqid 2731 . . . . . 6 (Id‘𝐷) = (Id‘𝐷)
86 eqid 2731 . . . . . 6 (Sect‘𝐷) = (Sect‘𝐷)
8718, 21, 9, 68catpropd 17610 . . . . . . 7 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
889, 87mpbid 232 . . . . . 6 ((𝜑𝑃 ∈ (Sect‘𝐶)) → 𝐷 ∈ Cat)
8961, 66eleqtrd 2833 . . . . . 6 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (2nd ‘(1st𝑃)) ∈ (Base‘𝐷))
9084, 74, 16, 85, 86, 88, 67, 89sectfval 17653 . . . . 5 ((𝜑𝑃 ∈ (Sect‘𝐶)) → ((1st ‘(1st𝑃))(Sect‘𝐷)(2nd ‘(1st𝑃))) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ((1st ‘(1st𝑃))(Hom ‘𝐷)(2nd ‘(1st𝑃))) ∧ 𝑔 ∈ ((2nd ‘(1st𝑃))(Hom ‘𝐷)(1st ‘(1st𝑃)))) ∧ (𝑔(⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(comp‘𝐷)(1st ‘(1st𝑃)))𝑓) = ((Id‘𝐷)‘(1st ‘(1st𝑃))))})
9182, 83, 903eqtr4rd 2777 . . . 4 ((𝜑𝑃 ∈ (Sect‘𝐶)) → ((1st ‘(1st𝑃))(Sect‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃))
92 sectfn 49061 . . . . . 6 (𝐷 ∈ Cat → (Sect‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
9388, 92syl 17 . . . . 5 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (Sect‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
94 fnbrovb 7392 . . . . 5 (((Sect‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ ((1st ‘(1st𝑃)) ∈ (Base‘𝐷) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐷))) → (((1st ‘(1st𝑃))(Sect‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃) ↔ ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Sect‘𝐷)(2nd𝑃)))
9593, 67, 89, 94syl12anc 836 . . . 4 ((𝜑𝑃 ∈ (Sect‘𝐶)) → (((1st ‘(1st𝑃))(Sect‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃) ↔ ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Sect‘𝐷)(2nd𝑃)))
9691, 95mpbid 232 . . 3 ((𝜑𝑃 ∈ (Sect‘𝐶)) → ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Sect‘𝐷)(2nd𝑃))
97 df-br 5087 . . 3 (⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Sect‘𝐷)(2nd𝑃) ↔ ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩ ∈ (Sect‘𝐷))
9896, 97sylib 218 . 2 ((𝜑𝑃 ∈ (Sect‘𝐶)) → ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩ ∈ (Sect‘𝐷))
9915, 98eqeltrd 2831 1 ((𝜑𝑃 ∈ (Sect‘𝐶)) → 𝑃 ∈ (Sect‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  [wsbc 3736  cop 4577   class class class wbr 5086  {copab 5148   × cxp 5609   Fn wfn 6471  cfv 6476  (class class class)co 7341  {coprab 7342  cmpo 7343  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  Hom chom 17167  compcco 17168  Catccat 17565  Idccid 17566  Homf chomf 17567  compfccomf 17568  Sectcsect 17646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-cat 17569  df-cid 17570  df-homf 17571  df-comf 17572  df-sect 17649
This theorem is referenced by:  sectpropd  49069
  Copyright terms: Public domain W3C validator