Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopropdlem Structured version   Visualization version   GIF version

Theorem isopropdlem 49017
Description: Lemma for isopropd 49018. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
sectpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
sectpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
isopropdlem ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ (Iso‘𝐷))

Proof of Theorem isopropdlem
Dummy variables 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ (Iso‘𝐶))
2 eqid 2730 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2730 . . . . . 6 (Inv‘𝐶) = (Inv‘𝐶)
4 df-iso 17717 . . . . . . . 8 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
54mptrcl 6979 . . . . . . 7 (𝑃 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
65adantl 481 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝐶 ∈ Cat)
7 eqid 2730 . . . . . 6 (Iso‘𝐶) = (Iso‘𝐶)
82, 3, 6, 7isofval2 49009 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Iso‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ dom (𝑥(Inv‘𝐶)𝑦)))
9 df-mpo 7394 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ dom (𝑥(Inv‘𝐶)𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))}
108, 9eqtrdi 2781 . . . 4 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Iso‘𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))})
111, 10eleqtrd 2831 . . 3 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))})
12 eloprab1st2nd 48844 . . 3 (𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))} → 𝑃 = ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩)
1311, 12syl 17 . 2 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 = ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩)
14 sectpropd.1 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
1514adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Homf𝐶) = (Homf𝐷))
16 sectpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
1716adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (compf𝐶) = (compf𝐷))
1815, 17invpropd 49016 . . . . . . 7 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Inv‘𝐶) = (Inv‘𝐷))
1918oveqd 7406 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))) = ((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))))
2019dmeqd 5871 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))) = dom ((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))))
21 eleq1 2817 . . . . . . . . . 10 (𝑥 = (1st ‘(1st𝑃)) → (𝑥 ∈ (Base‘𝐶) ↔ (1st ‘(1st𝑃)) ∈ (Base‘𝐶)))
2221anbi1d 631 . . . . . . . . 9 (𝑥 = (1st ‘(1st𝑃)) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ ((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))))
23 oveq1 7396 . . . . . . . . . . 11 (𝑥 = (1st ‘(1st𝑃)) → (𝑥(Inv‘𝐶)𝑦) = ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦))
2423dmeqd 5871 . . . . . . . . . 10 (𝑥 = (1st ‘(1st𝑃)) → dom (𝑥(Inv‘𝐶)𝑦) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦))
2524eqeq2d 2741 . . . . . . . . 9 (𝑥 = (1st ‘(1st𝑃)) → (𝑧 = dom (𝑥(Inv‘𝐶)𝑦) ↔ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦)))
2622, 25anbi12d 632 . . . . . . . 8 (𝑥 = (1st ‘(1st𝑃)) → (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦)) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦))))
27 eleq1 2817 . . . . . . . . . 10 (𝑦 = (2nd ‘(1st𝑃)) → (𝑦 ∈ (Base‘𝐶) ↔ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)))
2827anbi2d 630 . . . . . . . . 9 (𝑦 = (2nd ‘(1st𝑃)) → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ ((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶))))
29 oveq2 7397 . . . . . . . . . . 11 (𝑦 = (2nd ‘(1st𝑃)) → ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦) = ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))
3029dmeqd 5871 . . . . . . . . . 10 (𝑦 = (2nd ‘(1st𝑃)) → dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))
3130eqeq2d 2741 . . . . . . . . 9 (𝑦 = (2nd ‘(1st𝑃)) → (𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦) ↔ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))))
3228, 31anbi12d 632 . . . . . . . 8 (𝑦 = (2nd ‘(1st𝑃)) → ((((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦)) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))))
33 eqeq1 2734 . . . . . . . . 9 (𝑧 = (2nd𝑃) → (𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))) ↔ (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))))
3433anbi2d 630 . . . . . . . 8 (𝑧 = (2nd𝑃) → ((((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))))
3526, 32, 34eloprabi 8044 . . . . . . 7 (𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))} → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))))
3611, 35syl 17 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))))
3736simprd 495 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))
38 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
39 eqid 2730 . . . . . 6 (Inv‘𝐷) = (Inv‘𝐷)
4036simplld 767 . . . . . . . . . 10 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (1st ‘(1st𝑃)) ∈ (Base‘𝐶))
4115homfeqbas 17663 . . . . . . . . . 10 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
4240, 41eleqtrd 2831 . . . . . . . . 9 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (1st ‘(1st𝑃)) ∈ (Base‘𝐷))
4342elfvexd 6899 . . . . . . . 8 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝐷 ∈ V)
4415, 17, 6, 43catpropd 17676 . . . . . . 7 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
456, 44mpbid 232 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝐷 ∈ Cat)
4636simplrd 769 . . . . . . 7 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (2nd ‘(1st𝑃)) ∈ (Base‘𝐶))
4746, 41eleqtrd 2831 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (2nd ‘(1st𝑃)) ∈ (Base‘𝐷))
48 eqid 2730 . . . . . 6 (Iso‘𝐷) = (Iso‘𝐷)
4938, 39, 45, 42, 47, 48isoval 17733 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ((1st ‘(1st𝑃))(Iso‘𝐷)(2nd ‘(1st𝑃))) = dom ((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))))
5020, 37, 493eqtr4rd 2776 . . . 4 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ((1st ‘(1st𝑃))(Iso‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃))
51 isofn 17743 . . . . . 6 (𝐷 ∈ Cat → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
5245, 51syl 17 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
53 fnbrovb 7440 . . . . 5 (((Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ ((1st ‘(1st𝑃)) ∈ (Base‘𝐷) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐷))) → (((1st ‘(1st𝑃))(Iso‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃) ↔ ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Iso‘𝐷)(2nd𝑃)))
5452, 42, 47, 53syl12anc 836 . . . 4 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (((1st ‘(1st𝑃))(Iso‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃) ↔ ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Iso‘𝐷)(2nd𝑃)))
5550, 54mpbid 232 . . 3 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Iso‘𝐷)(2nd𝑃))
56 df-br 5110 . . 3 (⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Iso‘𝐷)(2nd𝑃) ↔ ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩ ∈ (Iso‘𝐷))
5755, 56sylib 218 . 2 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩ ∈ (Iso‘𝐷))
5813, 57eqeltrd 2829 1 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ (Iso‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4597   class class class wbr 5109  cmpt 5190   × cxp 5638  dom cdm 5640  ccom 5644   Fn wfn 6508  cfv 6513  (class class class)co 7389  {coprab 7390  cmpo 7391  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  Catccat 17631  Homf chomf 17633  compfccomf 17634  Invcinv 17713  Isociso 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-sect 17715  df-inv 17716  df-iso 17717
This theorem is referenced by:  isopropd  49018
  Copyright terms: Public domain W3C validator