Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopropdlem Structured version   Visualization version   GIF version

Theorem isopropdlem 49045
Description: Lemma for isopropd 49046. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
sectpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
sectpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
isopropdlem ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ (Iso‘𝐷))

Proof of Theorem isopropdlem
Dummy variables 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ (Iso‘𝐶))
2 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2729 . . . . . 6 (Inv‘𝐶) = (Inv‘𝐶)
4 df-iso 17675 . . . . . . . 8 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
54mptrcl 6943 . . . . . . 7 (𝑃 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
65adantl 481 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝐶 ∈ Cat)
7 eqid 2729 . . . . . 6 (Iso‘𝐶) = (Iso‘𝐶)
82, 3, 6, 7isofval2 49037 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Iso‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ dom (𝑥(Inv‘𝐶)𝑦)))
9 df-mpo 7358 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ dom (𝑥(Inv‘𝐶)𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))}
108, 9eqtrdi 2780 . . . 4 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Iso‘𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))})
111, 10eleqtrd 2830 . . 3 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))})
12 eloprab1st2nd 48872 . . 3 (𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))} → 𝑃 = ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩)
1311, 12syl 17 . 2 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 = ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩)
14 sectpropd.1 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
1514adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Homf𝐶) = (Homf𝐷))
16 sectpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
1716adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (compf𝐶) = (compf𝐷))
1815, 17invpropd 49044 . . . . . . 7 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Inv‘𝐶) = (Inv‘𝐷))
1918oveqd 7370 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))) = ((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))))
2019dmeqd 5852 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))) = dom ((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))))
21 eleq1 2816 . . . . . . . . . 10 (𝑥 = (1st ‘(1st𝑃)) → (𝑥 ∈ (Base‘𝐶) ↔ (1st ‘(1st𝑃)) ∈ (Base‘𝐶)))
2221anbi1d 631 . . . . . . . . 9 (𝑥 = (1st ‘(1st𝑃)) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ ((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))))
23 oveq1 7360 . . . . . . . . . . 11 (𝑥 = (1st ‘(1st𝑃)) → (𝑥(Inv‘𝐶)𝑦) = ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦))
2423dmeqd 5852 . . . . . . . . . 10 (𝑥 = (1st ‘(1st𝑃)) → dom (𝑥(Inv‘𝐶)𝑦) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦))
2524eqeq2d 2740 . . . . . . . . 9 (𝑥 = (1st ‘(1st𝑃)) → (𝑧 = dom (𝑥(Inv‘𝐶)𝑦) ↔ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦)))
2622, 25anbi12d 632 . . . . . . . 8 (𝑥 = (1st ‘(1st𝑃)) → (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦)) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦))))
27 eleq1 2816 . . . . . . . . . 10 (𝑦 = (2nd ‘(1st𝑃)) → (𝑦 ∈ (Base‘𝐶) ↔ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)))
2827anbi2d 630 . . . . . . . . 9 (𝑦 = (2nd ‘(1st𝑃)) → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ ((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶))))
29 oveq2 7361 . . . . . . . . . . 11 (𝑦 = (2nd ‘(1st𝑃)) → ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦) = ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))
3029dmeqd 5852 . . . . . . . . . 10 (𝑦 = (2nd ‘(1st𝑃)) → dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))
3130eqeq2d 2740 . . . . . . . . 9 (𝑦 = (2nd ‘(1st𝑃)) → (𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦) ↔ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))))
3228, 31anbi12d 632 . . . . . . . 8 (𝑦 = (2nd ‘(1st𝑃)) → ((((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)𝑦)) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))))
33 eqeq1 2733 . . . . . . . . 9 (𝑧 = (2nd𝑃) → (𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))) ↔ (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))))
3433anbi2d 630 . . . . . . . 8 (𝑧 = (2nd𝑃) → ((((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ 𝑧 = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))) ↔ (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))))
3526, 32, 34eloprabi 8005 . . . . . . 7 (𝑃 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 = dom (𝑥(Inv‘𝐶)𝑦))} → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))))
3611, 35syl 17 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (((1st ‘(1st𝑃)) ∈ (Base‘𝐶) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐶)) ∧ (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃)))))
3736simprd 495 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (2nd𝑃) = dom ((1st ‘(1st𝑃))(Inv‘𝐶)(2nd ‘(1st𝑃))))
38 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
39 eqid 2729 . . . . . 6 (Inv‘𝐷) = (Inv‘𝐷)
4036simplld 767 . . . . . . . . . 10 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (1st ‘(1st𝑃)) ∈ (Base‘𝐶))
4115homfeqbas 17621 . . . . . . . . . 10 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
4240, 41eleqtrd 2830 . . . . . . . . 9 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (1st ‘(1st𝑃)) ∈ (Base‘𝐷))
4342elfvexd 6863 . . . . . . . 8 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝐷 ∈ V)
4415, 17, 6, 43catpropd 17634 . . . . . . 7 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
456, 44mpbid 232 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝐷 ∈ Cat)
4636simplrd 769 . . . . . . 7 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (2nd ‘(1st𝑃)) ∈ (Base‘𝐶))
4746, 41eleqtrd 2830 . . . . . 6 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (2nd ‘(1st𝑃)) ∈ (Base‘𝐷))
48 eqid 2729 . . . . . 6 (Iso‘𝐷) = (Iso‘𝐷)
4938, 39, 45, 42, 47, 48isoval 17691 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ((1st ‘(1st𝑃))(Iso‘𝐷)(2nd ‘(1st𝑃))) = dom ((1st ‘(1st𝑃))(Inv‘𝐷)(2nd ‘(1st𝑃))))
5020, 37, 493eqtr4rd 2775 . . . 4 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ((1st ‘(1st𝑃))(Iso‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃))
51 isofn 17701 . . . . . 6 (𝐷 ∈ Cat → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
5245, 51syl 17 . . . . 5 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
53 fnbrovb 7404 . . . . 5 (((Iso‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ ((1st ‘(1st𝑃)) ∈ (Base‘𝐷) ∧ (2nd ‘(1st𝑃)) ∈ (Base‘𝐷))) → (((1st ‘(1st𝑃))(Iso‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃) ↔ ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Iso‘𝐷)(2nd𝑃)))
5452, 42, 47, 53syl12anc 836 . . . 4 ((𝜑𝑃 ∈ (Iso‘𝐶)) → (((1st ‘(1st𝑃))(Iso‘𝐷)(2nd ‘(1st𝑃))) = (2nd𝑃) ↔ ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Iso‘𝐷)(2nd𝑃)))
5550, 54mpbid 232 . . 3 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Iso‘𝐷)(2nd𝑃))
56 df-br 5096 . . 3 (⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩(Iso‘𝐷)(2nd𝑃) ↔ ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩ ∈ (Iso‘𝐷))
5755, 56sylib 218 . 2 ((𝜑𝑃 ∈ (Iso‘𝐶)) → ⟨⟨(1st ‘(1st𝑃)), (2nd ‘(1st𝑃))⟩, (2nd𝑃)⟩ ∈ (Iso‘𝐷))
5813, 57eqeltrd 2828 1 ((𝜑𝑃 ∈ (Iso‘𝐶)) → 𝑃 ∈ (Iso‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585   class class class wbr 5095  cmpt 5176   × cxp 5621  dom cdm 5623  ccom 5627   Fn wfn 6481  cfv 6486  (class class class)co 7353  {coprab 7354  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Basecbs 17139  Catccat 17589  Homf chomf 17591  compfccomf 17592  Invcinv 17671  Isociso 17672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-cat 17593  df-cid 17594  df-homf 17595  df-comf 17596  df-sect 17673  df-inv 17674  df-iso 17675
This theorem is referenced by:  isopropd  49046
  Copyright terms: Public domain W3C validator