![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbusgredgeu0 | Structured version Visualization version GIF version |
Description: For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.) |
Ref | Expression |
---|---|
nbusgrf1o1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbusgrf1o1.e | ⊢ 𝐸 = (Edg‘𝐺) |
nbusgrf1o1.n | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) |
nbusgrf1o1.i | ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} |
Ref | Expression |
---|---|
nbusgredgeu0 | ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝐺 ∈ USGraph) | |
2 | nbusgrf1o1.n | . . . . . . . 8 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) | |
3 | 2 | eleq2i 2817 | . . . . . . 7 ⊢ (𝑀 ∈ 𝑁 ↔ 𝑀 ∈ (𝐺 NeighbVtx 𝑈)) |
4 | nbgrsym 29089 | . . . . . . . . 9 ⊢ (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) | |
5 | 4 | a1i 11 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
6 | 5 | biimpd 228 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
7 | 3, 6 | biimtrid 241 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ 𝑁 → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
8 | 7 | imp 406 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) |
9 | nbusgrf1o1.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 9 | nbusgredgeu 29092 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) → ∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀}) |
11 | 1, 8, 10 | syl2anc 583 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀}) |
12 | df-reu 3369 | . . . 4 ⊢ (∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀})) | |
13 | 11, 12 | sylib 217 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀})) |
14 | anass 468 | . . . . 5 ⊢ (((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖 ∈ 𝐸 ∧ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}))) | |
15 | prid1g 4756 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑀}) | |
16 | 15 | ad2antlr 724 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝑈 ∈ {𝑈, 𝑀}) |
17 | eleq2 2814 | . . . . . . . . 9 ⊢ (𝑖 = {𝑈, 𝑀} → (𝑈 ∈ 𝑖 ↔ 𝑈 ∈ {𝑈, 𝑀})) | |
18 | 16, 17 | syl5ibrcom 246 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (𝑖 = {𝑈, 𝑀} → 𝑈 ∈ 𝑖)) |
19 | 18 | pm4.71rd 562 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (𝑖 = {𝑈, 𝑀} ↔ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}))) |
20 | 19 | bicomd 222 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ((𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}) ↔ 𝑖 = {𝑈, 𝑀})) |
21 | 20 | anbi2d 628 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ((𝑖 ∈ 𝐸 ∧ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀})) ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
22 | 14, 21 | bitrid 283 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
23 | 22 | eubidv 2572 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
24 | 13, 23 | mpbird 257 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
25 | df-reu 3369 | . . 3 ⊢ (∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀})) | |
26 | eleq2 2814 | . . . . . 6 ⊢ (𝑒 = 𝑖 → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ 𝑖)) | |
27 | nbusgrf1o1.i | . . . . . 6 ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} | |
28 | 26, 27 | elrab2 3678 | . . . . 5 ⊢ (𝑖 ∈ 𝐼 ↔ (𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖)) |
29 | 28 | anbi1i 623 | . . . 4 ⊢ ((𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀}) ↔ ((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
30 | 29 | eubii 2571 | . . 3 ⊢ (∃!𝑖(𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
31 | 25, 30 | bitri 275 | . 2 ⊢ (∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
32 | 24, 31 | sylibr 233 | 1 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃!weu 2554 ∃!wreu 3366 {crab 3424 {cpr 4622 ‘cfv 6533 (class class class)co 7401 Vtxcvtx 28725 Edgcedg 28776 USGraphcusgr 28878 NeighbVtx cnbgr 29058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-fz 13482 df-hash 14288 df-edg 28777 df-upgr 28811 df-umgr 28812 df-usgr 28880 df-nbgr 29059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |