Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbusgredgeu0 | Structured version Visualization version GIF version |
Description: For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.) |
Ref | Expression |
---|---|
nbusgrf1o1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbusgrf1o1.e | ⊢ 𝐸 = (Edg‘𝐺) |
nbusgrf1o1.n | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) |
nbusgrf1o1.i | ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} |
Ref | Expression |
---|---|
nbusgredgeu0 | ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝐺 ∈ USGraph) | |
2 | nbusgrf1o1.n | . . . . . . . 8 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) | |
3 | 2 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑀 ∈ 𝑁 ↔ 𝑀 ∈ (𝐺 NeighbVtx 𝑈)) |
4 | nbgrsym 27730 | . . . . . . . . 9 ⊢ (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) | |
5 | 4 | a1i 11 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
6 | 5 | biimpd 228 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
7 | 3, 6 | syl5bi 241 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ 𝑁 → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
8 | 7 | imp 407 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) |
9 | nbusgrf1o1.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 9 | nbusgredgeu 27733 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) → ∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀}) |
11 | 1, 8, 10 | syl2anc 584 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀}) |
12 | df-reu 3072 | . . . 4 ⊢ (∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀})) | |
13 | 11, 12 | sylib 217 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀})) |
14 | anass 469 | . . . . 5 ⊢ (((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖 ∈ 𝐸 ∧ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}))) | |
15 | prid1g 4696 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑀}) | |
16 | 15 | ad2antlr 724 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝑈 ∈ {𝑈, 𝑀}) |
17 | eleq2 2827 | . . . . . . . . 9 ⊢ (𝑖 = {𝑈, 𝑀} → (𝑈 ∈ 𝑖 ↔ 𝑈 ∈ {𝑈, 𝑀})) | |
18 | 16, 17 | syl5ibrcom 246 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (𝑖 = {𝑈, 𝑀} → 𝑈 ∈ 𝑖)) |
19 | 18 | pm4.71rd 563 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (𝑖 = {𝑈, 𝑀} ↔ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}))) |
20 | 19 | bicomd 222 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ((𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}) ↔ 𝑖 = {𝑈, 𝑀})) |
21 | 20 | anbi2d 629 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ((𝑖 ∈ 𝐸 ∧ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀})) ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
22 | 14, 21 | bitrid 282 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
23 | 22 | eubidv 2586 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
24 | 13, 23 | mpbird 256 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
25 | df-reu 3072 | . . 3 ⊢ (∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀})) | |
26 | eleq2 2827 | . . . . . 6 ⊢ (𝑒 = 𝑖 → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ 𝑖)) | |
27 | nbusgrf1o1.i | . . . . . 6 ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} | |
28 | 26, 27 | elrab2 3627 | . . . . 5 ⊢ (𝑖 ∈ 𝐼 ↔ (𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖)) |
29 | 28 | anbi1i 624 | . . . 4 ⊢ ((𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀}) ↔ ((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
30 | 29 | eubii 2585 | . . 3 ⊢ (∃!𝑖(𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
31 | 25, 30 | bitri 274 | . 2 ⊢ (∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
32 | 24, 31 | sylibr 233 | 1 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 ∃!wreu 3066 {crab 3068 {cpr 4563 ‘cfv 6433 (class class class)co 7275 Vtxcvtx 27366 Edgcedg 27417 USGraphcusgr 27519 NeighbVtx cnbgr 27699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 df-edg 27418 df-upgr 27452 df-umgr 27453 df-usgr 27521 df-nbgr 27700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |