Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbusgredgeu0 | Structured version Visualization version GIF version |
Description: For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.) |
Ref | Expression |
---|---|
nbusgrf1o1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbusgrf1o1.e | ⊢ 𝐸 = (Edg‘𝐺) |
nbusgrf1o1.n | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) |
nbusgrf1o1.i | ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} |
Ref | Expression |
---|---|
nbusgredgeu0 | ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 763 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝐺 ∈ USGraph) | |
2 | nbusgrf1o1.n | . . . . . . . 8 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) | |
3 | 2 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑀 ∈ 𝑁 ↔ 𝑀 ∈ (𝐺 NeighbVtx 𝑈)) |
4 | nbgrsym 27633 | . . . . . . . . 9 ⊢ (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) | |
5 | 4 | a1i 11 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
6 | 5 | biimpd 228 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
7 | 3, 6 | syl5bi 241 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ 𝑁 → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
8 | 7 | imp 406 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) |
9 | nbusgrf1o1.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 9 | nbusgredgeu 27636 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) → ∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀}) |
11 | 1, 8, 10 | syl2anc 583 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀}) |
12 | df-reu 3070 | . . . 4 ⊢ (∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀})) | |
13 | 11, 12 | sylib 217 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀})) |
14 | anass 468 | . . . . 5 ⊢ (((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖 ∈ 𝐸 ∧ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}))) | |
15 | prid1g 4693 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑀}) | |
16 | 15 | ad2antlr 723 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝑈 ∈ {𝑈, 𝑀}) |
17 | eleq2 2827 | . . . . . . . . 9 ⊢ (𝑖 = {𝑈, 𝑀} → (𝑈 ∈ 𝑖 ↔ 𝑈 ∈ {𝑈, 𝑀})) | |
18 | 16, 17 | syl5ibrcom 246 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (𝑖 = {𝑈, 𝑀} → 𝑈 ∈ 𝑖)) |
19 | 18 | pm4.71rd 562 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (𝑖 = {𝑈, 𝑀} ↔ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}))) |
20 | 19 | bicomd 222 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ((𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}) ↔ 𝑖 = {𝑈, 𝑀})) |
21 | 20 | anbi2d 628 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ((𝑖 ∈ 𝐸 ∧ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀})) ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
22 | 14, 21 | syl5bb 282 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
23 | 22 | eubidv 2586 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
24 | 13, 23 | mpbird 256 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
25 | df-reu 3070 | . . 3 ⊢ (∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀})) | |
26 | eleq2 2827 | . . . . . 6 ⊢ (𝑒 = 𝑖 → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ 𝑖)) | |
27 | nbusgrf1o1.i | . . . . . 6 ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} | |
28 | 26, 27 | elrab2 3620 | . . . . 5 ⊢ (𝑖 ∈ 𝐼 ↔ (𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖)) |
29 | 28 | anbi1i 623 | . . . 4 ⊢ ((𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀}) ↔ ((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
30 | 29 | eubii 2585 | . . 3 ⊢ (∃!𝑖(𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
31 | 25, 30 | bitri 274 | . 2 ⊢ (∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
32 | 24, 31 | sylibr 233 | 1 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃!weu 2568 ∃!wreu 3065 {crab 3067 {cpr 4560 ‘cfv 6418 (class class class)co 7255 Vtxcvtx 27269 Edgcedg 27320 USGraphcusgr 27422 NeighbVtx cnbgr 27602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-edg 27321 df-upgr 27355 df-umgr 27356 df-usgr 27424 df-nbgr 27603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |