MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgredgeu0 Structured version   Visualization version   GIF version

Theorem nbusgredgeu0 29302
Description: For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
nbusgrf1o1.v 𝑉 = (Vtx‘𝐺)
nbusgrf1o1.e 𝐸 = (Edg‘𝐺)
nbusgrf1o1.n 𝑁 = (𝐺 NeighbVtx 𝑈)
nbusgrf1o1.i 𝐼 = {𝑒𝐸𝑈𝑒}
Assertion
Ref Expression
nbusgredgeu0 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖𝐼 𝑖 = {𝑈, 𝑀})
Distinct variable groups:   𝑖,𝐸,𝑒   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖,𝑒   𝑖,𝑉
Allowed substitution hints:   𝐺(𝑒)   𝐼(𝑒,𝑖)   𝑀(𝑒)   𝑁(𝑒)   𝑉(𝑒)

Proof of Theorem nbusgredgeu0
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → 𝐺 ∈ USGraph)
2 nbusgrf1o1.n . . . . . . . 8 𝑁 = (𝐺 NeighbVtx 𝑈)
32eleq2i 2821 . . . . . . 7 (𝑀𝑁𝑀 ∈ (𝐺 NeighbVtx 𝑈))
4 nbgrsym 29297 . . . . . . . . 9 (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀))
54a1i 11 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
65biimpd 229 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
73, 6biimtrid 242 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑀𝑁𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
87imp 406 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))
9 nbusgrf1o1.e . . . . . 6 𝐸 = (Edg‘𝐺)
109nbusgredgeu 29300 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) → ∃!𝑖𝐸 𝑖 = {𝑈, 𝑀})
111, 8, 10syl2anc 584 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖𝐸 𝑖 = {𝑈, 𝑀})
12 df-reu 3357 . . . 4 (∃!𝑖𝐸 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖𝐸𝑖 = {𝑈, 𝑀}))
1311, 12sylib 218 . . 3 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖(𝑖𝐸𝑖 = {𝑈, 𝑀}))
14 anass 468 . . . . 5 (((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖𝐸 ∧ (𝑈𝑖𝑖 = {𝑈, 𝑀})))
15 prid1g 4727 . . . . . . . . . 10 (𝑈𝑉𝑈 ∈ {𝑈, 𝑀})
1615ad2antlr 727 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → 𝑈 ∈ {𝑈, 𝑀})
17 eleq2 2818 . . . . . . . . 9 (𝑖 = {𝑈, 𝑀} → (𝑈𝑖𝑈 ∈ {𝑈, 𝑀}))
1816, 17syl5ibrcom 247 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (𝑖 = {𝑈, 𝑀} → 𝑈𝑖))
1918pm4.71rd 562 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (𝑖 = {𝑈, 𝑀} ↔ (𝑈𝑖𝑖 = {𝑈, 𝑀})))
2019bicomd 223 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ((𝑈𝑖𝑖 = {𝑈, 𝑀}) ↔ 𝑖 = {𝑈, 𝑀}))
2120anbi2d 630 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ((𝑖𝐸 ∧ (𝑈𝑖𝑖 = {𝑈, 𝑀})) ↔ (𝑖𝐸𝑖 = {𝑈, 𝑀})))
2214, 21bitrid 283 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖𝐸𝑖 = {𝑈, 𝑀})))
2322eubidv 2580 . . 3 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖(𝑖𝐸𝑖 = {𝑈, 𝑀})))
2413, 23mpbird 257 . 2 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
25 df-reu 3357 . . 3 (∃!𝑖𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖𝐼𝑖 = {𝑈, 𝑀}))
26 eleq2 2818 . . . . . 6 (𝑒 = 𝑖 → (𝑈𝑒𝑈𝑖))
27 nbusgrf1o1.i . . . . . 6 𝐼 = {𝑒𝐸𝑈𝑒}
2826, 27elrab2 3665 . . . . 5 (𝑖𝐼 ↔ (𝑖𝐸𝑈𝑖))
2928anbi1i 624 . . . 4 ((𝑖𝐼𝑖 = {𝑈, 𝑀}) ↔ ((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
3029eubii 2579 . . 3 (∃!𝑖(𝑖𝐼𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
3125, 30bitri 275 . 2 (∃!𝑖𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
3224, 31sylibr 234 1 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖𝐼 𝑖 = {𝑈, 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2562  ∃!wreu 3354  {crab 3408  {cpr 4594  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  Edgcedg 28981  USGraphcusgr 29083   NeighbVtx cnbgr 29266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-edg 28982  df-upgr 29016  df-umgr 29017  df-usgr 29085  df-nbgr 29267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator