MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgredgeu0 Structured version   Visualization version   GIF version

Theorem nbusgredgeu0 27149
Description: For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
nbusgrf1o1.v 𝑉 = (Vtx‘𝐺)
nbusgrf1o1.e 𝐸 = (Edg‘𝐺)
nbusgrf1o1.n 𝑁 = (𝐺 NeighbVtx 𝑈)
nbusgrf1o1.i 𝐼 = {𝑒𝐸𝑈𝑒}
Assertion
Ref Expression
nbusgredgeu0 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖𝐼 𝑖 = {𝑈, 𝑀})
Distinct variable groups:   𝑖,𝐸,𝑒   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖,𝑒   𝑖,𝑉
Allowed substitution hints:   𝐺(𝑒)   𝐼(𝑒,𝑖)   𝑀(𝑒)   𝑁(𝑒)   𝑉(𝑒)

Proof of Theorem nbusgredgeu0
StepHypRef Expression
1 simpll 765 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → 𝐺 ∈ USGraph)
2 nbusgrf1o1.n . . . . . . . 8 𝑁 = (𝐺 NeighbVtx 𝑈)
32eleq2i 2904 . . . . . . 7 (𝑀𝑁𝑀 ∈ (𝐺 NeighbVtx 𝑈))
4 nbgrsym 27144 . . . . . . . . 9 (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀))
54a1i 11 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
65biimpd 231 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
73, 6syl5bi 244 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑀𝑁𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
87imp 409 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))
9 nbusgrf1o1.e . . . . . 6 𝐸 = (Edg‘𝐺)
109nbusgredgeu 27147 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) → ∃!𝑖𝐸 𝑖 = {𝑈, 𝑀})
111, 8, 10syl2anc 586 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖𝐸 𝑖 = {𝑈, 𝑀})
12 df-reu 3145 . . . 4 (∃!𝑖𝐸 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖𝐸𝑖 = {𝑈, 𝑀}))
1311, 12sylib 220 . . 3 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖(𝑖𝐸𝑖 = {𝑈, 𝑀}))
14 anass 471 . . . . 5 (((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖𝐸 ∧ (𝑈𝑖𝑖 = {𝑈, 𝑀})))
15 prid1g 4695 . . . . . . . . . 10 (𝑈𝑉𝑈 ∈ {𝑈, 𝑀})
1615ad2antlr 725 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → 𝑈 ∈ {𝑈, 𝑀})
17 eleq2 2901 . . . . . . . . 9 (𝑖 = {𝑈, 𝑀} → (𝑈𝑖𝑈 ∈ {𝑈, 𝑀}))
1816, 17syl5ibrcom 249 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (𝑖 = {𝑈, 𝑀} → 𝑈𝑖))
1918pm4.71rd 565 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (𝑖 = {𝑈, 𝑀} ↔ (𝑈𝑖𝑖 = {𝑈, 𝑀})))
2019bicomd 225 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ((𝑈𝑖𝑖 = {𝑈, 𝑀}) ↔ 𝑖 = {𝑈, 𝑀}))
2120anbi2d 630 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ((𝑖𝐸 ∧ (𝑈𝑖𝑖 = {𝑈, 𝑀})) ↔ (𝑖𝐸𝑖 = {𝑈, 𝑀})))
2214, 21syl5bb 285 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖𝐸𝑖 = {𝑈, 𝑀})))
2322eubidv 2668 . . 3 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖(𝑖𝐸𝑖 = {𝑈, 𝑀})))
2413, 23mpbird 259 . 2 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
25 df-reu 3145 . . 3 (∃!𝑖𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖𝐼𝑖 = {𝑈, 𝑀}))
26 eleq2 2901 . . . . . 6 (𝑒 = 𝑖 → (𝑈𝑒𝑈𝑖))
27 nbusgrf1o1.i . . . . . 6 𝐼 = {𝑒𝐸𝑈𝑒}
2826, 27elrab2 3682 . . . . 5 (𝑖𝐼 ↔ (𝑖𝐸𝑈𝑖))
2928anbi1i 625 . . . 4 ((𝑖𝐼𝑖 = {𝑈, 𝑀}) ↔ ((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
3029eubii 2666 . . 3 (∃!𝑖(𝑖𝐼𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
3125, 30bitri 277 . 2 (∃!𝑖𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
3224, 31sylibr 236 1 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖𝐼 𝑖 = {𝑈, 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  ∃!weu 2649  ∃!wreu 3140  {crab 3142  {cpr 4568  cfv 6354  (class class class)co 7155  Vtxcvtx 26780  Edgcedg 26831  USGraphcusgr 26933   NeighbVtx cnbgr 27113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-fz 12892  df-hash 13690  df-edg 26832  df-upgr 26866  df-umgr 26867  df-usgr 26935  df-nbgr 27114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator