| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbusgredgeu0 | Structured version Visualization version GIF version | ||
| Description: For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.) (Proof shortened by AV, 13-Feb-2022.) |
| Ref | Expression |
|---|---|
| nbusgrf1o1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| nbusgrf1o1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| nbusgrf1o1.n | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) |
| nbusgrf1o1.i | ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} |
| Ref | Expression |
|---|---|
| nbusgredgeu0 | ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝐺 ∈ USGraph) | |
| 2 | nbusgrf1o1.n | . . . . . . . 8 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) | |
| 3 | 2 | eleq2i 2821 | . . . . . . 7 ⊢ (𝑀 ∈ 𝑁 ↔ 𝑀 ∈ (𝐺 NeighbVtx 𝑈)) |
| 4 | nbgrsym 29297 | . . . . . . . . 9 ⊢ (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) | |
| 5 | 4 | a1i 11 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
| 6 | 5 | biimpd 229 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
| 7 | 3, 6 | biimtrid 242 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑀 ∈ 𝑁 → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))) |
| 8 | 7 | imp 406 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) |
| 9 | nbusgrf1o1.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 10 | 9 | nbusgredgeu 29300 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) → ∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀}) |
| 11 | 1, 8, 10 | syl2anc 584 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀}) |
| 12 | df-reu 3357 | . . . 4 ⊢ (∃!𝑖 ∈ 𝐸 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀})) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀})) |
| 14 | anass 468 | . . . . 5 ⊢ (((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖 ∈ 𝐸 ∧ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}))) | |
| 15 | prid1g 4727 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑀}) | |
| 16 | 15 | ad2antlr 727 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → 𝑈 ∈ {𝑈, 𝑀}) |
| 17 | eleq2 2818 | . . . . . . . . 9 ⊢ (𝑖 = {𝑈, 𝑀} → (𝑈 ∈ 𝑖 ↔ 𝑈 ∈ {𝑈, 𝑀})) | |
| 18 | 16, 17 | syl5ibrcom 247 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (𝑖 = {𝑈, 𝑀} → 𝑈 ∈ 𝑖)) |
| 19 | 18 | pm4.71rd 562 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (𝑖 = {𝑈, 𝑀} ↔ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}))) |
| 20 | 19 | bicomd 223 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ((𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀}) ↔ 𝑖 = {𝑈, 𝑀})) |
| 21 | 20 | anbi2d 630 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ((𝑖 ∈ 𝐸 ∧ (𝑈 ∈ 𝑖 ∧ 𝑖 = {𝑈, 𝑀})) ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
| 22 | 14, 21 | bitrid 283 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
| 23 | 22 | eubidv 2580 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → (∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖(𝑖 ∈ 𝐸 ∧ 𝑖 = {𝑈, 𝑀}))) |
| 24 | 13, 23 | mpbird 257 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
| 25 | df-reu 3357 | . . 3 ⊢ (∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀})) | |
| 26 | eleq2 2818 | . . . . . 6 ⊢ (𝑒 = 𝑖 → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ 𝑖)) | |
| 27 | nbusgrf1o1.i | . . . . . 6 ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} | |
| 28 | 26, 27 | elrab2 3665 | . . . . 5 ⊢ (𝑖 ∈ 𝐼 ↔ (𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖)) |
| 29 | 28 | anbi1i 624 | . . . 4 ⊢ ((𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀}) ↔ ((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
| 30 | 29 | eubii 2579 | . . 3 ⊢ (∃!𝑖(𝑖 ∈ 𝐼 ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
| 31 | 25, 30 | bitri 275 | . 2 ⊢ (∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖((𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖) ∧ 𝑖 = {𝑈, 𝑀})) |
| 32 | 24, 31 | sylibr 234 | 1 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑀 ∈ 𝑁) → ∃!𝑖 ∈ 𝐼 𝑖 = {𝑈, 𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2562 ∃!wreu 3354 {crab 3408 {cpr 4594 ‘cfv 6514 (class class class)co 7390 Vtxcvtx 28930 Edgcedg 28981 USGraphcusgr 29083 NeighbVtx cnbgr 29266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 df-edg 28982 df-upgr 29016 df-umgr 29017 df-usgr 29085 df-nbgr 29267 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |