MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgnbusgreu Structured version   Visualization version   GIF version

Theorem edgnbusgreu 29331
Description: For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
edgnbusgreu.e 𝐸 = (Edg‘𝐺)
edgnbusgreu.n 𝑁 = (𝐺 NeighbVtx 𝑀)
Assertion
Ref Expression
edgnbusgreu (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Distinct variable groups:   𝐶,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝑀   𝑛,𝑉
Allowed substitution hint:   𝑁(𝑛)

Proof of Theorem edgnbusgreu
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐺 ∈ USGraph)
2 edgnbusgreu.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2820 . . . . . . 7 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
43biimpi 216 . . . . . 6 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
54ad2antrl 728 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐶 ∈ (Edg‘𝐺))
6 simprr 772 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝑀𝐶)
7 usgredg2vtxeu 29185 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Edg‘𝐺) ∧ 𝑀𝐶) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
81, 5, 6, 7syl3anc 1373 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
9 df-reu 3346 . . . . 5 (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
10 prcom 4686 . . . . . . . . . . . . . . . 16 {𝑀, 𝑛} = {𝑛, 𝑀}
1110eqeq2i 2742 . . . . . . . . . . . . . . 15 (𝐶 = {𝑀, 𝑛} ↔ 𝐶 = {𝑛, 𝑀})
1211biimpi 216 . . . . . . . . . . . . . 14 (𝐶 = {𝑀, 𝑛} → 𝐶 = {𝑛, 𝑀})
1312eleq1d 2813 . . . . . . . . . . . . 13 (𝐶 = {𝑀, 𝑛} → (𝐶𝐸 ↔ {𝑛, 𝑀} ∈ 𝐸))
1413biimpcd 249 . . . . . . . . . . . 12 (𝐶𝐸 → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1514ad2antrl 728 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1615adantld 490 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸))
1716imp 406 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → {𝑛, 𝑀} ∈ 𝐸)
18 simprr 772 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
1917, 18jca 511 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
20 simpl 482 . . . . . . . . . 10 (({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸)
21 eqid 2729 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
222, 21usgrpredgv 29161 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑀 ∈ (Vtx‘𝐺)))
2322simpld 494 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → 𝑛 ∈ (Vtx‘𝐺))
241, 20, 23syl2an 596 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝑛 ∈ (Vtx‘𝐺))
25 simprr 772 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
2624, 25jca 511 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
2719, 26impbida 800 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2827eubidv 2579 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2928biimpd 229 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
309, 29biimtrid 242 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
318, 30mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
32 edgnbusgreu.n . . . . . . . 8 𝑁 = (𝐺 NeighbVtx 𝑀)
3332eleq2i 2820 . . . . . . 7 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑀))
342nbusgreledg 29317 . . . . . . 7 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑀) ↔ {𝑛, 𝑀} ∈ 𝐸))
3533, 34bitrid 283 . . . . . 6 (𝐺 ∈ USGraph → (𝑛𝑁 ↔ {𝑛, 𝑀} ∈ 𝐸))
3635anbi1d 631 . . . . 5 (𝐺 ∈ USGraph → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3736ad2antrr 726 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3837eubidv 2579 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3931, 38mpbird 257 . 2 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
40 df-reu 3346 . 2 (∃!𝑛𝑁 𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
4139, 40sylibr 234 1 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2561  ∃!wreu 3343  {cpr 4581  cfv 6486  (class class class)co 7353  Vtxcvtx 28960  Edgcedg 29011  USGraphcusgr 29113   NeighbVtx cnbgr 29296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-n0 12404  df-xnn0 12477  df-z 12491  df-uz 12755  df-fz 13430  df-hash 14257  df-edg 29012  df-upgr 29046  df-umgr 29047  df-uspgr 29114  df-usgr 29115  df-nbgr 29297
This theorem is referenced by:  nbusgrf1o0  29333
  Copyright terms: Public domain W3C validator