Proof of Theorem edgnbusgreu
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpll 767 | . . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → 𝐺 ∈ USGraph) | 
| 2 |  | edgnbusgreu.e | . . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) | 
| 3 | 2 | eleq2i 2833 | . . . . . . 7
⊢ (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ (Edg‘𝐺)) | 
| 4 | 3 | biimpi 216 | . . . . . 6
⊢ (𝐶 ∈ 𝐸 → 𝐶 ∈ (Edg‘𝐺)) | 
| 5 | 4 | ad2antrl 728 | . . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → 𝐶 ∈ (Edg‘𝐺)) | 
| 6 |  | simprr 773 | . . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → 𝑀 ∈ 𝐶) | 
| 7 |  | usgredg2vtxeu 29238 | . . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Edg‘𝐺) ∧ 𝑀 ∈ 𝐶) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛}) | 
| 8 | 1, 5, 6, 7 | syl3anc 1373 | . . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛}) | 
| 9 |  | df-reu 3381 | . . . . 5
⊢
(∃!𝑛 ∈
(Vtx‘𝐺)𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) | 
| 10 |  | prcom 4732 | . . . . . . . . . . . . . . . 16
⊢ {𝑀, 𝑛} = {𝑛, 𝑀} | 
| 11 | 10 | eqeq2i 2750 | . . . . . . . . . . . . . . 15
⊢ (𝐶 = {𝑀, 𝑛} ↔ 𝐶 = {𝑛, 𝑀}) | 
| 12 | 11 | biimpi 216 | . . . . . . . . . . . . . 14
⊢ (𝐶 = {𝑀, 𝑛} → 𝐶 = {𝑛, 𝑀}) | 
| 13 | 12 | eleq1d 2826 | . . . . . . . . . . . . 13
⊢ (𝐶 = {𝑀, 𝑛} → (𝐶 ∈ 𝐸 ↔ {𝑛, 𝑀} ∈ 𝐸)) | 
| 14 | 13 | biimpcd 249 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ 𝐸 → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸)) | 
| 15 | 14 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸)) | 
| 16 | 15 | adantld 490 | . . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸)) | 
| 17 | 16 | imp 406 | . . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → {𝑛, 𝑀} ∈ 𝐸) | 
| 18 |  | simprr 773 | . . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛}) | 
| 19 | 17, 18 | jca 511 | . . . . . . . 8
⊢ ((((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → ({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛})) | 
| 20 |  | simpl 482 | . . . . . . . . . 10
⊢ (({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸) | 
| 21 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 22 | 2, 21 | usgrpredgv 29214 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑀 ∈ (Vtx‘𝐺))) | 
| 23 | 22 | simpld 494 | . . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → 𝑛 ∈ (Vtx‘𝐺)) | 
| 24 | 1, 20, 23 | syl2an 596 | . . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛})) → 𝑛 ∈ (Vtx‘𝐺)) | 
| 25 |  | simprr 773 | . . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛}) | 
| 26 | 24, 25 | jca 511 | . . . . . . . 8
⊢ ((((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) | 
| 27 | 19, 26 | impbida 801 | . . . . . . 7
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛}))) | 
| 28 | 27 | eubidv 2586 | . . . . . 6
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛}))) | 
| 29 | 28 | biimpd 229 | . . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛}))) | 
| 30 | 9, 29 | biimtrid 242 | . . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛}))) | 
| 31 | 8, 30 | mpd 15 | . . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛})) | 
| 32 |  | edgnbusgreu.n | . . . . . . . 8
⊢ 𝑁 = (𝐺 NeighbVtx 𝑀) | 
| 33 | 32 | eleq2i 2833 | . . . . . . 7
⊢ (𝑛 ∈ 𝑁 ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑀)) | 
| 34 | 2 | nbusgreledg 29370 | . . . . . . 7
⊢ (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑀) ↔ {𝑛, 𝑀} ∈ 𝐸)) | 
| 35 | 33, 34 | bitrid 283 | . . . . . 6
⊢ (𝐺 ∈ USGraph → (𝑛 ∈ 𝑁 ↔ {𝑛, 𝑀} ∈ 𝐸)) | 
| 36 | 35 | anbi1d 631 | . . . . 5
⊢ (𝐺 ∈ USGraph → ((𝑛 ∈ 𝑁 ∧ 𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛}))) | 
| 37 | 36 | ad2antrr 726 | . . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → ((𝑛 ∈ 𝑁 ∧ 𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛}))) | 
| 38 | 37 | eubidv 2586 | . . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → (∃!𝑛(𝑛 ∈ 𝑁 ∧ 𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸 ∧ 𝐶 = {𝑀, 𝑛}))) | 
| 39 | 31, 38 | mpbird 257 | . 2
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → ∃!𝑛(𝑛 ∈ 𝑁 ∧ 𝐶 = {𝑀, 𝑛})) | 
| 40 |  | df-reu 3381 | . 2
⊢
(∃!𝑛 ∈
𝑁 𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛 ∈ 𝑁 ∧ 𝐶 = {𝑀, 𝑛})) | 
| 41 | 39, 40 | sylibr 234 | 1
⊢ (((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉) ∧ (𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶)) → ∃!𝑛 ∈ 𝑁 𝐶 = {𝑀, 𝑛}) |