MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgnbusgreu Structured version   Visualization version   GIF version

Theorem edgnbusgreu 27301
Description: For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
edgnbusgreu.e 𝐸 = (Edg‘𝐺)
edgnbusgreu.n 𝑁 = (𝐺 NeighbVtx 𝑀)
Assertion
Ref Expression
edgnbusgreu (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Distinct variable groups:   𝐶,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝑀   𝑛,𝑉
Allowed substitution hint:   𝑁(𝑛)

Proof of Theorem edgnbusgreu
StepHypRef Expression
1 simpll 767 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐺 ∈ USGraph)
2 edgnbusgreu.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2824 . . . . . . 7 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
43biimpi 219 . . . . . 6 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
54ad2antrl 728 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐶 ∈ (Edg‘𝐺))
6 simprr 773 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝑀𝐶)
7 usgredg2vtxeu 27155 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Edg‘𝐺) ∧ 𝑀𝐶) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
81, 5, 6, 7syl3anc 1372 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
9 df-reu 3060 . . . . 5 (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
10 prcom 4620 . . . . . . . . . . . . . . . 16 {𝑀, 𝑛} = {𝑛, 𝑀}
1110eqeq2i 2751 . . . . . . . . . . . . . . 15 (𝐶 = {𝑀, 𝑛} ↔ 𝐶 = {𝑛, 𝑀})
1211biimpi 219 . . . . . . . . . . . . . 14 (𝐶 = {𝑀, 𝑛} → 𝐶 = {𝑛, 𝑀})
1312eleq1d 2817 . . . . . . . . . . . . 13 (𝐶 = {𝑀, 𝑛} → (𝐶𝐸 ↔ {𝑛, 𝑀} ∈ 𝐸))
1413biimpcd 252 . . . . . . . . . . . 12 (𝐶𝐸 → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1514ad2antrl 728 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1615adantld 494 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸))
1716imp 410 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → {𝑛, 𝑀} ∈ 𝐸)
18 simprr 773 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
1917, 18jca 515 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
20 simpl 486 . . . . . . . . . 10 (({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸)
21 eqid 2738 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
222, 21usgrpredgv 27131 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑀 ∈ (Vtx‘𝐺)))
2322simpld 498 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → 𝑛 ∈ (Vtx‘𝐺))
241, 20, 23syl2an 599 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝑛 ∈ (Vtx‘𝐺))
25 simprr 773 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
2624, 25jca 515 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
2719, 26impbida 801 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2827eubidv 2587 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2928biimpd 232 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
309, 29syl5bi 245 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
318, 30mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
32 edgnbusgreu.n . . . . . . . 8 𝑁 = (𝐺 NeighbVtx 𝑀)
3332eleq2i 2824 . . . . . . 7 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑀))
342nbusgreledg 27287 . . . . . . 7 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑀) ↔ {𝑛, 𝑀} ∈ 𝐸))
3533, 34syl5bb 286 . . . . . 6 (𝐺 ∈ USGraph → (𝑛𝑁 ↔ {𝑛, 𝑀} ∈ 𝐸))
3635anbi1d 633 . . . . 5 (𝐺 ∈ USGraph → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3736ad2antrr 726 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3837eubidv 2587 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3931, 38mpbird 260 . 2 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
40 df-reu 3060 . 2 (∃!𝑛𝑁 𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
4139, 40sylibr 237 1 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  ∃!weu 2569  ∃!wreu 3055  {cpr 4515  cfv 6333  (class class class)co 7164  Vtxcvtx 26933  Edgcedg 26984  USGraphcusgr 27086   NeighbVtx cnbgr 27266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-oadd 8128  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-dju 9396  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-n0 11970  df-xnn0 12042  df-z 12056  df-uz 12318  df-fz 12975  df-hash 13776  df-edg 26985  df-upgr 27019  df-umgr 27020  df-uspgr 27087  df-usgr 27088  df-nbgr 27267
This theorem is referenced by:  nbusgrf1o0  27303
  Copyright terms: Public domain W3C validator