MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgnbusgreu Structured version   Visualization version   GIF version

Theorem edgnbusgreu 28892
Description: For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
edgnbusgreu.e 𝐸 = (Edg‘𝐺)
edgnbusgreu.n 𝑁 = (𝐺 NeighbVtx 𝑀)
Assertion
Ref Expression
edgnbusgreu (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Distinct variable groups:   𝐶,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝑀   𝑛,𝑉
Allowed substitution hint:   𝑁(𝑛)

Proof of Theorem edgnbusgreu
StepHypRef Expression
1 simpll 764 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐺 ∈ USGraph)
2 edgnbusgreu.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2824 . . . . . . 7 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
43biimpi 215 . . . . . 6 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
54ad2antrl 725 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐶 ∈ (Edg‘𝐺))
6 simprr 770 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝑀𝐶)
7 usgredg2vtxeu 28746 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Edg‘𝐺) ∧ 𝑀𝐶) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
81, 5, 6, 7syl3anc 1370 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
9 df-reu 3376 . . . . 5 (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
10 prcom 4736 . . . . . . . . . . . . . . . 16 {𝑀, 𝑛} = {𝑛, 𝑀}
1110eqeq2i 2744 . . . . . . . . . . . . . . 15 (𝐶 = {𝑀, 𝑛} ↔ 𝐶 = {𝑛, 𝑀})
1211biimpi 215 . . . . . . . . . . . . . 14 (𝐶 = {𝑀, 𝑛} → 𝐶 = {𝑛, 𝑀})
1312eleq1d 2817 . . . . . . . . . . . . 13 (𝐶 = {𝑀, 𝑛} → (𝐶𝐸 ↔ {𝑛, 𝑀} ∈ 𝐸))
1413biimpcd 248 . . . . . . . . . . . 12 (𝐶𝐸 → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1514ad2antrl 725 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1615adantld 490 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸))
1716imp 406 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → {𝑛, 𝑀} ∈ 𝐸)
18 simprr 770 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
1917, 18jca 511 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
20 simpl 482 . . . . . . . . . 10 (({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸)
21 eqid 2731 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
222, 21usgrpredgv 28722 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑀 ∈ (Vtx‘𝐺)))
2322simpld 494 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → 𝑛 ∈ (Vtx‘𝐺))
241, 20, 23syl2an 595 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝑛 ∈ (Vtx‘𝐺))
25 simprr 770 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
2624, 25jca 511 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
2719, 26impbida 798 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2827eubidv 2579 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2928biimpd 228 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
309, 29biimtrid 241 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
318, 30mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
32 edgnbusgreu.n . . . . . . . 8 𝑁 = (𝐺 NeighbVtx 𝑀)
3332eleq2i 2824 . . . . . . 7 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑀))
342nbusgreledg 28878 . . . . . . 7 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑀) ↔ {𝑛, 𝑀} ∈ 𝐸))
3533, 34bitrid 283 . . . . . 6 (𝐺 ∈ USGraph → (𝑛𝑁 ↔ {𝑛, 𝑀} ∈ 𝐸))
3635anbi1d 629 . . . . 5 (𝐺 ∈ USGraph → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3736ad2antrr 723 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3837eubidv 2579 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3931, 38mpbird 257 . 2 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
40 df-reu 3376 . 2 (∃!𝑛𝑁 𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
4139, 40sylibr 233 1 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  ∃!weu 2561  ∃!wreu 3373  {cpr 4630  cfv 6543  (class class class)co 7412  Vtxcvtx 28524  Edgcedg 28575  USGraphcusgr 28677   NeighbVtx cnbgr 28857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-hash 14296  df-edg 28576  df-upgr 28610  df-umgr 28611  df-uspgr 28678  df-usgr 28679  df-nbgr 28858
This theorem is referenced by:  nbusgrf1o0  28894
  Copyright terms: Public domain W3C validator