MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgnbusgreu Structured version   Visualization version   GIF version

Theorem edgnbusgreu 28489
Description: For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
edgnbusgreu.e 𝐸 = (Edg‘𝐺)
edgnbusgreu.n 𝑁 = (𝐺 NeighbVtx 𝑀)
Assertion
Ref Expression
edgnbusgreu (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Distinct variable groups:   𝐶,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝑀   𝑛,𝑉
Allowed substitution hint:   𝑁(𝑛)

Proof of Theorem edgnbusgreu
StepHypRef Expression
1 simpll 765 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐺 ∈ USGraph)
2 edgnbusgreu.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2824 . . . . . . 7 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
43biimpi 215 . . . . . 6 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
54ad2antrl 726 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐶 ∈ (Edg‘𝐺))
6 simprr 771 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝑀𝐶)
7 usgredg2vtxeu 28343 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Edg‘𝐺) ∧ 𝑀𝐶) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
81, 5, 6, 7syl3anc 1371 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
9 df-reu 3376 . . . . 5 (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
10 prcom 4729 . . . . . . . . . . . . . . . 16 {𝑀, 𝑛} = {𝑛, 𝑀}
1110eqeq2i 2744 . . . . . . . . . . . . . . 15 (𝐶 = {𝑀, 𝑛} ↔ 𝐶 = {𝑛, 𝑀})
1211biimpi 215 . . . . . . . . . . . . . 14 (𝐶 = {𝑀, 𝑛} → 𝐶 = {𝑛, 𝑀})
1312eleq1d 2817 . . . . . . . . . . . . 13 (𝐶 = {𝑀, 𝑛} → (𝐶𝐸 ↔ {𝑛, 𝑀} ∈ 𝐸))
1413biimpcd 248 . . . . . . . . . . . 12 (𝐶𝐸 → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1514ad2antrl 726 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1615adantld 491 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸))
1716imp 407 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → {𝑛, 𝑀} ∈ 𝐸)
18 simprr 771 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
1917, 18jca 512 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
20 simpl 483 . . . . . . . . . 10 (({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸)
21 eqid 2731 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
222, 21usgrpredgv 28319 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑀 ∈ (Vtx‘𝐺)))
2322simpld 495 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → 𝑛 ∈ (Vtx‘𝐺))
241, 20, 23syl2an 596 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝑛 ∈ (Vtx‘𝐺))
25 simprr 771 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
2624, 25jca 512 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
2719, 26impbida 799 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2827eubidv 2579 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2928biimpd 228 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
309, 29biimtrid 241 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
318, 30mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
32 edgnbusgreu.n . . . . . . . 8 𝑁 = (𝐺 NeighbVtx 𝑀)
3332eleq2i 2824 . . . . . . 7 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑀))
342nbusgreledg 28475 . . . . . . 7 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑀) ↔ {𝑛, 𝑀} ∈ 𝐸))
3533, 34bitrid 282 . . . . . 6 (𝐺 ∈ USGraph → (𝑛𝑁 ↔ {𝑛, 𝑀} ∈ 𝐸))
3635anbi1d 630 . . . . 5 (𝐺 ∈ USGraph → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3736ad2antrr 724 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3837eubidv 2579 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3931, 38mpbird 256 . 2 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
40 df-reu 3376 . 2 (∃!𝑛𝑁 𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
4139, 40sylibr 233 1 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  ∃!weu 2561  ∃!wreu 3373  {cpr 4624  cfv 6532  (class class class)co 7393  Vtxcvtx 28121  Edgcedg 28172  USGraphcusgr 28274   NeighbVtx cnbgr 28454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-oadd 8452  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9878  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-n0 12455  df-xnn0 12527  df-z 12541  df-uz 12805  df-fz 13467  df-hash 14273  df-edg 28173  df-upgr 28207  df-umgr 28208  df-uspgr 28275  df-usgr 28276  df-nbgr 28455
This theorem is referenced by:  nbusgrf1o0  28491
  Copyright terms: Public domain W3C validator