| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extvfval | Structured version Visualization version GIF version | ||
| Description: The "variable extension" function evaluated for adding a variable with index 𝐴. (Contributed by Thierry Arnoux, 25-Jan-2026.) |
| Ref | Expression |
|---|---|
| extvval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| extvval.1 | ⊢ 0 = (0g‘𝑅) |
| extvval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| extvval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| extvfval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
| extvfval.j | ⊢ 𝐽 = (𝐼 ∖ {𝐴}) |
| extvfval.m | ⊢ 𝑀 = (Base‘(𝐽 mPoly 𝑅)) |
| Ref | Expression |
|---|---|
| extvfval | ⊢ (𝜑 → ((𝐼extendVars𝑅)‘𝐴) = (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝑓‘(𝑥 ↾ 𝐽)), 0 )))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4585 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | difeq2d 4075 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝐼 ∖ {𝑎}) = (𝐼 ∖ {𝐴})) |
| 3 | extvfval.j | . . . . . 6 ⊢ 𝐽 = (𝐼 ∖ {𝐴}) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝐼 ∖ {𝑎}) = 𝐽) |
| 5 | 4 | fvoveq1d 7374 | . . . 4 ⊢ (𝑎 = 𝐴 → (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) = (Base‘(𝐽 mPoly 𝑅))) |
| 6 | extvfval.m | . . . 4 ⊢ 𝑀 = (Base‘(𝐽 mPoly 𝑅)) | |
| 7 | 5, 6 | eqtr4di 2786 | . . 3 ⊢ (𝑎 = 𝐴 → (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) = 𝑀) |
| 8 | fveqeq2 6837 | . . . . 5 ⊢ (𝑎 = 𝐴 → ((𝑥‘𝑎) = 0 ↔ (𝑥‘𝐴) = 0)) | |
| 9 | 4 | reseq2d 5932 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑥 ↾ (𝐼 ∖ {𝑎})) = (𝑥 ↾ 𝐽)) |
| 10 | 9 | fveq2d 6832 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))) = (𝑓‘(𝑥 ↾ 𝐽))) |
| 11 | 8, 10 | ifbieq1d 4499 | . . . 4 ⊢ (𝑎 = 𝐴 → if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ) = if((𝑥‘𝐴) = 0, (𝑓‘(𝑥 ↾ 𝐽)), 0 )) |
| 12 | 11 | mpteq2dv 5187 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )) = (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝑓‘(𝑥 ↾ 𝐽)), 0 ))) |
| 13 | 7, 12 | mpteq12dv 5180 | . 2 ⊢ (𝑎 = 𝐴 → (𝑓 ∈ (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ))) = (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝑓‘(𝑥 ↾ 𝐽)), 0 )))) |
| 14 | extvval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} | |
| 15 | extvval.1 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 16 | extvval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 17 | extvval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 18 | eqid 2733 | . . 3 ⊢ (𝐼 ∖ {𝑎}) = (𝐼 ∖ {𝑎}) | |
| 19 | eqid 2733 | . . 3 ⊢ (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) = (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) | |
| 20 | 14, 15, 16, 17, 18, 19 | extvval 33582 | . 2 ⊢ (𝜑 → (𝐼extendVars𝑅) = (𝑎 ∈ 𝐼 ↦ (𝑓 ∈ (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ))))) |
| 21 | extvfval.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
| 22 | 6 | fvexi 6842 | . . . 4 ⊢ 𝑀 ∈ V |
| 23 | 22 | mptex 7163 | . . 3 ⊢ (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝑓‘(𝑥 ↾ 𝐽)), 0 ))) ∈ V |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝑓‘(𝑥 ↾ 𝐽)), 0 ))) ∈ V) |
| 25 | 13, 20, 21, 24 | fvmptd4 6959 | 1 ⊢ (𝜑 → ((𝐼extendVars𝑅)‘𝐴) = (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝑓‘(𝑥 ↾ 𝐽)), 0 )))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∖ cdif 3895 ifcif 4474 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 finSupp cfsupp 9252 0cc0 11013 ℕ0cn0 12388 Basecbs 17122 0gc0g 17345 mPoly cmpl 21845 extendVarscextv 33580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-extv 33581 |
| This theorem is referenced by: extvfv 33584 extvfvalf 33588 |
| Copyright terms: Public domain | W3C validator |