Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extvfval Structured version   Visualization version   GIF version

Theorem extvfval 33583
Description: The "variable extension" function evaluated for adding a variable with index 𝐴. (Contributed by Thierry Arnoux, 25-Jan-2026.)
Hypotheses
Ref Expression
extvval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
extvval.1 0 = (0g𝑅)
extvval.i (𝜑𝐼𝑉)
extvval.r (𝜑𝑅𝑊)
extvfval.a (𝜑𝐴𝐼)
extvfval.j 𝐽 = (𝐼 ∖ {𝐴})
extvfval.m 𝑀 = (Base‘(𝐽 mPoly 𝑅))
Assertion
Ref Expression
extvfval (𝜑 → ((𝐼extendVars𝑅)‘𝐴) = (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝑓‘(𝑥𝐽)), 0 ))))
Distinct variable groups:   𝑓,𝐼,,𝑥   𝑅,𝑓,𝑥   𝐴,𝑓,𝑥   𝑓,𝑀
Allowed substitution hints:   𝜑(𝑥,𝑓,)   𝐴()   𝐷(𝑥,𝑓,)   𝑅()   𝐽(𝑥,𝑓,)   𝑀(𝑥,)   𝑉(𝑥,𝑓,)   𝑊(𝑥,𝑓,)   0 (𝑥,𝑓,)

Proof of Theorem extvfval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sneq 4585 . . . . . . 7 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21difeq2d 4075 . . . . . 6 (𝑎 = 𝐴 → (𝐼 ∖ {𝑎}) = (𝐼 ∖ {𝐴}))
3 extvfval.j . . . . . 6 𝐽 = (𝐼 ∖ {𝐴})
42, 3eqtr4di 2786 . . . . 5 (𝑎 = 𝐴 → (𝐼 ∖ {𝑎}) = 𝐽)
54fvoveq1d 7374 . . . 4 (𝑎 = 𝐴 → (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) = (Base‘(𝐽 mPoly 𝑅)))
6 extvfval.m . . . 4 𝑀 = (Base‘(𝐽 mPoly 𝑅))
75, 6eqtr4di 2786 . . 3 (𝑎 = 𝐴 → (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) = 𝑀)
8 fveqeq2 6837 . . . . 5 (𝑎 = 𝐴 → ((𝑥𝑎) = 0 ↔ (𝑥𝐴) = 0))
94reseq2d 5932 . . . . . 6 (𝑎 = 𝐴 → (𝑥 ↾ (𝐼 ∖ {𝑎})) = (𝑥𝐽))
109fveq2d 6832 . . . . 5 (𝑎 = 𝐴 → (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))) = (𝑓‘(𝑥𝐽)))
118, 10ifbieq1d 4499 . . . 4 (𝑎 = 𝐴 → if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ) = if((𝑥𝐴) = 0, (𝑓‘(𝑥𝐽)), 0 ))
1211mpteq2dv 5187 . . 3 (𝑎 = 𝐴 → (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )) = (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝑓‘(𝑥𝐽)), 0 )))
137, 12mpteq12dv 5180 . 2 (𝑎 = 𝐴 → (𝑓 ∈ (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) ↦ (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ))) = (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝑓‘(𝑥𝐽)), 0 ))))
14 extvval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
15 extvval.1 . . 3 0 = (0g𝑅)
16 extvval.i . . 3 (𝜑𝐼𝑉)
17 extvval.r . . 3 (𝜑𝑅𝑊)
18 eqid 2733 . . 3 (𝐼 ∖ {𝑎}) = (𝐼 ∖ {𝑎})
19 eqid 2733 . . 3 (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) = (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅))
2014, 15, 16, 17, 18, 19extvval 33582 . 2 (𝜑 → (𝐼extendVars𝑅) = (𝑎𝐼 ↦ (𝑓 ∈ (Base‘((𝐼 ∖ {𝑎}) mPoly 𝑅)) ↦ (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )))))
21 extvfval.a . 2 (𝜑𝐴𝐼)
226fvexi 6842 . . . 4 𝑀 ∈ V
2322mptex 7163 . . 3 (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝑓‘(𝑥𝐽)), 0 ))) ∈ V
2423a1i 11 . 2 (𝜑 → (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝑓‘(𝑥𝐽)), 0 ))) ∈ V)
2513, 20, 21, 24fvmptd4 6959 1 (𝜑 → ((𝐼extendVars𝑅)‘𝐴) = (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝑓‘(𝑥𝐽)), 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  ifcif 4474  {csn 4575   class class class wbr 5093  cmpt 5174  cres 5621  cfv 6486  (class class class)co 7352  m cmap 8756   finSupp cfsupp 9252  0cc0 11013  0cn0 12388  Basecbs 17122  0gc0g 17345   mPoly cmpl 21845  extendVarscextv 33580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-extv 33581
This theorem is referenced by:  extvfv  33584  extvfvalf  33588
  Copyright terms: Public domain W3C validator