MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dominfac Structured version   Visualization version   GIF version

Theorem dominfac 9787
Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac 9673. See dominf 9659 for a version proved from ax-cc 9649. (Contributed by NM, 25-Mar-2007.)
Hypothesis
Ref Expression
dominfac.1 𝐴 ∈ V
Assertion
Ref Expression
dominfac ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)

Proof of Theorem dominfac
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dominfac.1 . 2 𝐴 ∈ V
2 neeq1 3023 . . . 4 (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅))
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 unieq 4714 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
53, 4sseq12d 3884 . . . 4 (𝑥 = 𝐴 → (𝑥 𝑥𝐴 𝐴))
62, 5anbi12d 621 . . 3 (𝑥 = 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ↔ (𝐴 ≠ ∅ ∧ 𝐴 𝐴)))
7 breq2 4927 . . 3 (𝑥 = 𝐴 → (ω ≼ 𝑥 ↔ ω ≼ 𝐴))
86, 7imbi12d 337 . 2 (𝑥 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥) ↔ ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)))
9 eqid 2772 . . . 4 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
10 eqid 2772 . . . 4 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
119, 10, 1, 1inf3lem6 8884 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥)
12 vpwex 5125 . . . 4 𝒫 𝑥 ∈ V
1312f1dom 8322 . . 3 ((rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥 → ω ≼ 𝒫 𝑥)
14 pwfi 8608 . . . . . . 7 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
1514biimpi 208 . . . . . 6 (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin)
16 isfinite 8903 . . . . . 6 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
17 isfinite 8903 . . . . . 6 (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω)
1815, 16, 173imtr3i 283 . . . . 5 (𝑥 ≺ ω → 𝒫 𝑥 ≺ ω)
1918con3i 152 . . . 4 (¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω)
20 omex 8894 . . . . 5 ω ∈ V
21 domtri 9770 . . . . 5 ((ω ∈ V ∧ 𝒫 𝑥 ∈ V) → (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω))
2220, 12, 21mp2an 679 . . . 4 (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω)
23 vex 3412 . . . . 5 𝑥 ∈ V
24 domtri 9770 . . . . 5 ((ω ∈ V ∧ 𝑥 ∈ V) → (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω))
2520, 23, 24mp2an 679 . . . 4 (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω)
2619, 22, 253imtr4i 284 . . 3 (ω ≼ 𝒫 𝑥 → ω ≼ 𝑥)
2711, 13, 263syl 18 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥)
281, 8, 27vtocl 3472 1 ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2961  {crab 3086  Vcvv 3409  cin 3822  wss 3823  c0 4172  𝒫 cpw 4416   cuni 4706   class class class wbr 4923  cmpt 5002  cres 5403  1-1wf1 6179  ωcom 7390  reccrdg 7843  cdom 8298  csdm 8299  Fincfn 8300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-reg 8845  ax-inf2 8892  ax-ac2 9677
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-se 5361  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-2o 7900  df-oadd 7903  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-card 9156  df-ac 9330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator