MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dominfac Structured version   Visualization version   GIF version

Theorem dominfac 10642
Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac 10528. See dominf 10514 for a version proved from ax-cc 10504. (Contributed by NM, 25-Mar-2007.)
Hypothesis
Ref Expression
dominfac.1 𝐴 ∈ V
Assertion
Ref Expression
dominfac ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)

Proof of Theorem dominfac
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dominfac.1 . 2 𝐴 ∈ V
2 neeq1 3009 . . . 4 (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅))
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 unieq 4942 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
53, 4sseq12d 4042 . . . 4 (𝑥 = 𝐴 → (𝑥 𝑥𝐴 𝐴))
62, 5anbi12d 631 . . 3 (𝑥 = 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ↔ (𝐴 ≠ ∅ ∧ 𝐴 𝐴)))
7 breq2 5170 . . 3 (𝑥 = 𝐴 → (ω ≼ 𝑥 ↔ ω ≼ 𝐴))
86, 7imbi12d 344 . 2 (𝑥 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥) ↔ ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)))
9 eqid 2740 . . . 4 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
10 eqid 2740 . . . 4 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
119, 10, 1, 1inf3lem6 9702 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥)
12 vpwex 5395 . . . 4 𝒫 𝑥 ∈ V
1312f1dom 9034 . . 3 ((rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥 → ω ≼ 𝒫 𝑥)
14 pwfi 9385 . . . . . . 7 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
1514biimpi 216 . . . . . 6 (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin)
16 isfinite 9721 . . . . . 6 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
17 isfinite 9721 . . . . . 6 (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω)
1815, 16, 173imtr3i 291 . . . . 5 (𝑥 ≺ ω → 𝒫 𝑥 ≺ ω)
1918con3i 154 . . . 4 (¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω)
20 omex 9712 . . . . 5 ω ∈ V
21 domtri 10625 . . . . 5 ((ω ∈ V ∧ 𝒫 𝑥 ∈ V) → (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω))
2220, 12, 21mp2an 691 . . . 4 (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω)
23 vex 3492 . . . . 5 𝑥 ∈ V
24 domtri 10625 . . . . 5 ((ω ∈ V ∧ 𝑥 ∈ V) → (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω))
2520, 23, 24mp2an 691 . . . 4 (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω)
2619, 22, 253imtr4i 292 . . 3 (ω ≼ 𝒫 𝑥 → ω ≼ 𝑥)
2711, 13, 263syl 18 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥)
281, 8, 27vtocl 3570 1 ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  cmpt 5249  cres 5702  1-1wf1 6570  ωcom 7903  reccrdg 8465  cdom 9001  csdm 9002  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator