| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oen | Structured version Visualization version GIF version | ||
| Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| Ref | Expression |
|---|---|
| f1oen.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| f1oen | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oen.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | f1oeng 8983 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 –1-1-onto→wf1o 6529 ≈ cen 8954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-en 8958 |
| This theorem is referenced by: mapfien2 9419 infxpenlem 10025 dfac8alem 10041 dfac12lem2 10157 dfac12lem3 10158 r1om 10255 axcc2lem 10448 summolem3 15728 summolem2 15730 zsum 15732 prodmolem3 15947 prodmolem2 15949 zprod 15951 cpnnen 16245 eulerthlem2 16799 hashgcdeq 16807 4sqlem11 16973 gicen 19259 odhash 19553 odhash2 19554 sylow1lem2 19578 sylow2blem1 19599 znhash 21517 wlkswwlksen 29808 wlknwwlksnen 29817 eupthfi 30132 numclwwlk1lem2 30287 ballotlemfrc 34505 ballotlem8 34515 erdszelem10 35168 poimirlem4 37594 poimirlem26 37616 poimirlem27 37617 pwfi2en 43068 gricen 47886 grlicen 47970 thincciso2 49289 termcterm2 49347 aacllem 49613 |
| Copyright terms: Public domain | W3C validator |