| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oen | Structured version Visualization version GIF version | ||
| Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| Ref | Expression |
|---|---|
| f1oen.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| f1oen | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oen.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | f1oeng 8979 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3457 class class class wbr 5116 –1-1-onto→wf1o 6526 ≈ cen 8950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-en 8954 |
| This theorem is referenced by: mapfien2 9415 infxpenlem 10019 dfac8alem 10035 dfac12lem2 10151 dfac12lem3 10152 r1om 10249 axcc2lem 10442 summolem3 15717 summolem2 15719 zsum 15721 prodmolem3 15936 prodmolem2 15938 zprod 15940 cpnnen 16232 eulerthlem2 16786 hashgcdeq 16794 4sqlem11 16960 gicen 19246 odhash 19540 odhash2 19541 sylow1lem2 19565 sylow2blem1 19586 znhash 21504 wlkswwlksen 29794 wlknwwlksnen 29803 eupthfi 30118 numclwwlk1lem2 30273 ballotlemfrc 34467 ballotlem8 34477 erdszelem10 35143 poimirlem4 37569 poimirlem26 37591 poimirlem27 37592 pwfi2en 43046 gricen 47839 grlicen 47922 thincciso2 49128 termcterm2 49184 aacllem 49385 |
| Copyright terms: Public domain | W3C validator |