| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oen | Structured version Visualization version GIF version | ||
| Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| Ref | Expression |
|---|---|
| f1oen.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| f1oen | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oen.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | f1oeng 8896 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 –1-1-onto→wf1o 6481 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-en 8873 |
| This theorem is referenced by: mapfien2 9299 infxpenlem 9907 dfac8alem 9923 dfac12lem2 10039 dfac12lem3 10040 r1om 10137 axcc2lem 10330 summolem3 15621 summolem2 15623 zsum 15625 prodmolem3 15840 prodmolem2 15842 zprod 15844 cpnnen 16138 eulerthlem2 16693 hashgcdeq 16701 4sqlem11 16867 gicen 19157 odhash 19453 odhash2 19454 sylow1lem2 19478 sylow2blem1 19499 znhash 21465 wlkswwlksen 29825 wlknwwlksnen 29834 eupthfi 30149 numclwwlk1lem2 30304 ballotlemfrc 34501 ballotlem8 34511 erdszelem10 35183 poimirlem4 37614 poimirlem26 37636 poimirlem27 37637 pwfi2en 43080 gricen 47919 grlicen 48011 thincciso2 49450 termcterm2 49509 aacllem 49796 |
| Copyright terms: Public domain | W3C validator |