MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen Structured version   Visualization version   GIF version

Theorem f1oen 9033
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Hypothesis
Ref Expression
f1oen.1 𝐴 ∈ V
Assertion
Ref Expression
f1oen (𝐹:𝐴1-1-onto𝐵𝐴𝐵)

Proof of Theorem f1oen
StepHypRef Expression
1 f1oen.1 . 2 𝐴 ∈ V
2 f1oeng 9031 . 2 ((𝐴 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
31, 2mpan 689 1 (𝐹:𝐴1-1-onto𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488   class class class wbr 5166  1-1-ontowf1o 6572  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-en 9004
This theorem is referenced by:  mapfien2  9478  infxpenlem  10082  dfac8alem  10098  dfac12lem2  10214  dfac12lem3  10215  r1om  10312  axcc2lem  10505  summolem3  15762  summolem2  15764  zsum  15766  prodmolem3  15981  prodmolem2  15983  zprod  15985  cpnnen  16277  eulerthlem2  16829  hashgcdeq  16836  4sqlem11  17002  gicen  19318  odhash  19616  odhash2  19617  sylow1lem2  19641  sylow2blem1  19662  znhash  21600  wlkswwlksen  29913  wlknwwlksnen  29922  eupthfi  30237  numclwwlk1lem2  30392  ballotlemfrc  34491  ballotlem8  34501  erdszelem10  35168  poimirlem4  37584  poimirlem26  37606  poimirlem27  37607  pwfi2en  43054  gricen  47778  grlicen  47834  aacllem  48895
  Copyright terms: Public domain W3C validator