| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oen | Structured version Visualization version GIF version | ||
| Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| Ref | Expression |
|---|---|
| f1oen.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| f1oen | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oen.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | f1oeng 8942 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 –1-1-onto→wf1o 6510 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-en 8919 |
| This theorem is referenced by: mapfien2 9360 infxpenlem 9966 dfac8alem 9982 dfac12lem2 10098 dfac12lem3 10099 r1om 10196 axcc2lem 10389 summolem3 15680 summolem2 15682 zsum 15684 prodmolem3 15899 prodmolem2 15901 zprod 15903 cpnnen 16197 eulerthlem2 16752 hashgcdeq 16760 4sqlem11 16926 gicen 19210 odhash 19504 odhash2 19505 sylow1lem2 19529 sylow2blem1 19550 znhash 21468 wlkswwlksen 29810 wlknwwlksnen 29819 eupthfi 30134 numclwwlk1lem2 30289 ballotlemfrc 34518 ballotlem8 34528 erdszelem10 35187 poimirlem4 37618 poimirlem26 37640 poimirlem27 37641 pwfi2en 43086 gricen 47925 grlicen 48009 thincciso2 49444 termcterm2 49503 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |