Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oen | Structured version Visualization version GIF version |
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
Ref | Expression |
---|---|
f1oen.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
f1oen | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oen.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | f1oeng 8742 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3431 class class class wbr 5079 –1-1-onto→wf1o 6431 ≈ cen 8713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-en 8717 |
This theorem is referenced by: mapfien2 9146 infxpenlem 9770 dfac8alem 9786 dfac12lem2 9901 dfac12lem3 9902 r1om 10001 axcc2lem 10193 summolem3 15424 summolem2 15426 zsum 15428 prodmolem3 15641 prodmolem2 15643 zprod 15645 cpnnen 15936 eulerthlem2 16481 hashgcdeq 16488 4sqlem11 16654 gicen 18891 odhash 19177 odhash2 19178 sylow1lem2 19202 sylow2blem1 19223 znhash 20764 wlkswwlksen 28241 wlknwwlksnen 28250 eupthfi 28565 numclwwlk1lem2 28720 ballotlemfrc 32489 ballotlem8 32499 erdszelem10 33158 poimirlem4 35777 poimirlem26 35799 poimirlem27 35800 pwfi2en 40919 aacllem 46474 |
Copyright terms: Public domain | W3C validator |