Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oen | Structured version Visualization version GIF version |
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
Ref | Expression |
---|---|
f1oen.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
f1oen | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oen.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | f1oeng 8759 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 –1-1-onto→wf1o 6432 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-en 8734 |
This theorem is referenced by: mapfien2 9168 infxpenlem 9769 dfac8alem 9785 dfac12lem2 9900 dfac12lem3 9901 r1om 10000 axcc2lem 10192 summolem3 15426 summolem2 15428 zsum 15430 prodmolem3 15643 prodmolem2 15645 zprod 15647 cpnnen 15938 eulerthlem2 16483 hashgcdeq 16490 4sqlem11 16656 gicen 18893 odhash 19179 odhash2 19180 sylow1lem2 19204 sylow2blem1 19225 znhash 20766 wlkswwlksen 28245 wlknwwlksnen 28254 eupthfi 28569 numclwwlk1lem2 28724 ballotlemfrc 32493 ballotlem8 32503 erdszelem10 33162 poimirlem4 35781 poimirlem26 35803 poimirlem27 35804 pwfi2en 40922 aacllem 46505 |
Copyright terms: Public domain | W3C validator |