MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen Structured version   Visualization version   GIF version

Theorem f1oen 9013
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Hypothesis
Ref Expression
f1oen.1 𝐴 ∈ V
Assertion
Ref Expression
f1oen (𝐹:𝐴1-1-onto𝐵𝐴𝐵)

Proof of Theorem f1oen
StepHypRef Expression
1 f1oen.1 . 2 𝐴 ∈ V
2 f1oeng 9011 . 2 ((𝐴 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
31, 2mpan 690 1 (𝐹:𝐴1-1-onto𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3480   class class class wbr 5143  1-1-ontowf1o 6560  cen 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-en 8986
This theorem is referenced by:  mapfien2  9449  infxpenlem  10053  dfac8alem  10069  dfac12lem2  10185  dfac12lem3  10186  r1om  10283  axcc2lem  10476  summolem3  15750  summolem2  15752  zsum  15754  prodmolem3  15969  prodmolem2  15971  zprod  15973  cpnnen  16265  eulerthlem2  16819  hashgcdeq  16827  4sqlem11  16993  gicen  19296  odhash  19592  odhash2  19593  sylow1lem2  19617  sylow2blem1  19638  znhash  21577  wlkswwlksen  29900  wlknwwlksnen  29909  eupthfi  30224  numclwwlk1lem2  30379  ballotlemfrc  34529  ballotlem8  34539  erdszelem10  35205  poimirlem4  37631  poimirlem26  37653  poimirlem27  37654  pwfi2en  43109  gricen  47894  grlicen  47977  thincciso2  49104  termcterm2  49146  aacllem  49320
  Copyright terms: Public domain W3C validator