MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen Structured version   Visualization version   GIF version

Theorem f1oen 8985
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Hypothesis
Ref Expression
f1oen.1 𝐴 ∈ V
Assertion
Ref Expression
f1oen (𝐹:𝐴1-1-onto𝐵𝐴𝐵)

Proof of Theorem f1oen
StepHypRef Expression
1 f1oen.1 . 2 𝐴 ∈ V
2 f1oeng 8983 . 2 ((𝐴 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
31, 2mpan 690 1 (𝐹:𝐴1-1-onto𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459   class class class wbr 5119  1-1-ontowf1o 6529  cen 8954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-en 8958
This theorem is referenced by:  mapfien2  9419  infxpenlem  10025  dfac8alem  10041  dfac12lem2  10157  dfac12lem3  10158  r1om  10255  axcc2lem  10448  summolem3  15728  summolem2  15730  zsum  15732  prodmolem3  15947  prodmolem2  15949  zprod  15951  cpnnen  16245  eulerthlem2  16799  hashgcdeq  16807  4sqlem11  16973  gicen  19259  odhash  19553  odhash2  19554  sylow1lem2  19578  sylow2blem1  19599  znhash  21517  wlkswwlksen  29808  wlknwwlksnen  29817  eupthfi  30132  numclwwlk1lem2  30287  ballotlemfrc  34505  ballotlem8  34515  erdszelem10  35168  poimirlem4  37594  poimirlem26  37616  poimirlem27  37617  pwfi2en  43068  gricen  47886  grlicen  47970  thincciso2  49289  termcterm2  49347  aacllem  49613
  Copyright terms: Public domain W3C validator