MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen Structured version   Visualization version   GIF version

Theorem f1oen 8533
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Hypothesis
Ref Expression
f1oen.1 𝐴 ∈ V
Assertion
Ref Expression
f1oen (𝐹:𝐴1-1-onto𝐵𝐴𝐵)

Proof of Theorem f1oen
StepHypRef Expression
1 f1oen.1 . 2 𝐴 ∈ V
2 f1oeng 8531 . 2 ((𝐴 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
31, 2mpan 688 1 (𝐹:𝐴1-1-onto𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Vcvv 3497   class class class wbr 5069  1-1-ontowf1o 6357  cen 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-en 8513
This theorem is referenced by:  mapfien2  8875  infxpenlem  9442  dfac8alem  9458  dfac12lem2  9573  dfac12lem3  9574  r1om  9669  axcc2lem  9861  summolem3  15074  summolem2  15076  zsum  15078  prodmolem3  15290  prodmolem2  15292  zprod  15294  cpnnen  15585  eulerthlem2  16122  hashgcdeq  16129  4sqlem11  16294  gicen  18420  odhash  18702  odhash2  18703  sylow1lem2  18727  sylow2blem1  18748  znhash  20708  wlkswwlksen  27661  wlknwwlksnen  27670  eupthfi  27987  numclwwlk1lem2  28142  ballotlemfrc  31788  ballotlem8  31798  erdszelem10  32451  poimirlem4  34900  poimirlem26  34922  poimirlem27  34923  pwfi2en  39703  aacllem  44909
  Copyright terms: Public domain W3C validator