![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrex | Structured version Visualization version GIF version |
Description: The class 𝐺 of all "simple pseudographs" with a fixed set of vertices 𝑉 is a set. (Contributed by AV, 26-Nov-2021.) |
Ref | Expression |
---|---|
uspgrsprf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
uspgrsprf.g | ⊢ 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
Ref | Expression |
---|---|
uspgrex | ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrsprf.p | . . 3 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
2 | fvex 6897 | . . . 4 ⊢ (Pairs‘𝑉) ∈ V | |
3 | 2 | pwex 5371 | . . 3 ⊢ 𝒫 (Pairs‘𝑉) ∈ V |
4 | 1, 3 | eqeltri 2823 | . 2 ⊢ 𝑃 ∈ V |
5 | uspgrsprf.g | . . . 4 ⊢ 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
6 | eqid 2726 | . . . 4 ⊢ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) | |
7 | 1, 5, 6 | uspgrsprf1o 47080 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝑃) |
8 | f1ovv 7940 | . . 3 ⊢ ((𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝑃 → (𝐺 ∈ V ↔ 𝑃 ∈ V)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝑉 ∈ 𝑊 → (𝐺 ∈ V ↔ 𝑃 ∈ V)) |
10 | 4, 9 | mpbiri 258 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 Vcvv 3468 𝒫 cpw 4597 {copab 5203 ↦ cmpt 5224 –1-1-onto→wf1o 6535 ‘cfv 6536 2nd c2nd 7970 Vtxcvtx 28760 Edgcedg 28811 USPGraphcuspgr 28912 Pairscspr 46698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-n0 12474 df-xnn0 12546 df-z 12560 df-uz 12824 df-fz 13488 df-hash 14294 df-vtx 28762 df-iedg 28763 df-edg 28812 df-upgr 28846 df-uspgr 28914 df-spr 46699 |
This theorem is referenced by: uspgrbispr 47082 uspgrbisymrelALT 47086 |
Copyright terms: Public domain | W3C validator |