![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrex | Structured version Visualization version GIF version |
Description: The class 𝐺 of all "simple pseudographs" with a fixed set of vertices 𝑉 is a set. (Contributed by AV, 26-Nov-2021.) |
Ref | Expression |
---|---|
uspgrsprf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
uspgrsprf.g | ⊢ 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
Ref | Expression |
---|---|
uspgrex | ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrsprf.p | . . 3 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
2 | fvex 6913 | . . . 4 ⊢ (Pairs‘𝑉) ∈ V | |
3 | 2 | pwex 5382 | . . 3 ⊢ 𝒫 (Pairs‘𝑉) ∈ V |
4 | 1, 3 | eqeltri 2824 | . 2 ⊢ 𝑃 ∈ V |
5 | uspgrsprf.g | . . . 4 ⊢ 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
6 | eqid 2727 | . . . 4 ⊢ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) | |
7 | 1, 5, 6 | uspgrsprf1o 47262 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝑃) |
8 | f1ovv 7965 | . . 3 ⊢ ((𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝑃 → (𝐺 ∈ V ↔ 𝑃 ∈ V)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝑉 ∈ 𝑊 → (𝐺 ∈ V ↔ 𝑃 ∈ V)) |
10 | 4, 9 | mpbiri 257 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3066 Vcvv 3471 𝒫 cpw 4604 {copab 5212 ↦ cmpt 5233 –1-1-onto→wf1o 6550 ‘cfv 6551 2nd c2nd 7996 Vtxcvtx 28827 Edgcedg 28878 USPGraphcuspgr 28979 Pairscspr 46819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-oadd 8495 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-dju 9930 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-n0 12509 df-xnn0 12581 df-z 12595 df-uz 12859 df-fz 13523 df-hash 14328 df-vtx 28829 df-iedg 28830 df-edg 28879 df-upgr 28913 df-uspgr 28981 df-spr 46820 |
This theorem is referenced by: uspgrbispr 47264 uspgrbisymrelALT 47268 |
Copyright terms: Public domain | W3C validator |