Step | Hyp | Ref
| Expression |
1 | | gsumzcl.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
2 | | gsumzcl.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | | gsumzcl.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
4 | 3 | fvexi 6770 |
. . . . . . . 8
⊢ 0 ∈
V |
5 | 4 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ V) |
6 | | ssidd 3940 |
. . . . . . 7
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) |
7 | 1, 2, 5, 6 | gsumcllem 19424 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 0 )) |
8 | 7 | oveq2d 7271 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
9 | | gsumzcl.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
10 | 3 | gsumz 18389 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
11 | 9, 2, 10 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
(𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
13 | 8, 12 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
𝐹) = 0 ) |
14 | | gsumzcl.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
15 | 14, 3 | mndidcl 18315 |
. . . . . 6
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
16 | 9, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐵) |
17 | 16 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 0 ∈ 𝐵) |
18 | 13, 17 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
𝐹) ∈ 𝐵) |
19 | 18 | ex 412 |
. 2
⊢ (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg
𝐹) ∈ 𝐵)) |
20 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
21 | | gsumzcl.z |
. . . . . . 7
⊢ 𝑍 = (Cntz‘𝐺) |
22 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd) |
23 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴 ∈ 𝑉) |
24 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴⟶𝐵) |
25 | | gsumzcl.c |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
26 | 25 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
27 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) →
(♯‘(𝐹 supp
0 ))
∈ ℕ) |
28 | | f1of1 6699 |
. . . . . . . . 9
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 )) |
29 | 28 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 )) |
30 | | suppssdm 7964 |
. . . . . . . . . 10
⊢ (𝐹 supp 0 ) ⊆ dom 𝐹 |
31 | 30, 1 | fssdm 6604 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴) |
32 | 31 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴) |
33 | | f1ss 6660 |
. . . . . . . 8
⊢ ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→𝐴) |
34 | 29, 32, 33 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→𝐴) |
35 | | ssid 3939 |
. . . . . . . 8
⊢ (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ) |
36 | | f1ofo 6707 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 )) |
37 | | forn 6675 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 )) |
38 | 36, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 )) |
39 | 38 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 )) |
40 | 35, 39 | sseqtrrid 3970 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓) |
41 | | eqid 2738 |
. . . . . . 7
⊢ ((𝐹 ∘ 𝑓) supp 0 ) = ((𝐹 ∘ 𝑓) supp 0 ) |
42 | 14, 3, 20, 21, 22, 23, 24, 26, 27, 34, 40, 41 | gsumval3 19423 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg
𝐹) =
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(𝐹 supp 0 )))) |
43 | | nnuz 12550 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
44 | 27, 43 | eleqtrdi 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) →
(♯‘(𝐹 supp
0 ))
∈ (ℤ≥‘1)) |
45 | | f1f 6654 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→𝐴 → 𝑓:(1...(♯‘(𝐹 supp 0 )))⟶𝐴) |
46 | 34, 45 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))⟶𝐴) |
47 | | fco 6608 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))⟶𝐴) → (𝐹 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))⟶𝐵) |
48 | 24, 46, 47 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))⟶𝐵) |
49 | 48 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) ∧ 𝑘 ∈
(1...(♯‘(𝐹 supp
0 ))))
→ ((𝐹 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
50 | 14, 20 | mndcl 18308 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑘(+g‘𝐺)𝑥) ∈ 𝐵) |
51 | 50 | 3expb 1118 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑘(+g‘𝐺)𝑥) ∈ 𝐵) |
52 | 22, 51 | sylan 579 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑘(+g‘𝐺)𝑥) ∈ 𝐵) |
53 | 44, 49, 52 | seqcl 13671 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))) ∈ 𝐵) |
54 | 42, 53 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg
𝐹) ∈ 𝐵) |
55 | 54 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) →
(𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg
𝐹) ∈ 𝐵)) |
56 | 55 | exlimdv 1937 |
. . 3
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg
𝐹) ∈ 𝐵)) |
57 | 56 | expimpd 453 |
. 2
⊢ (𝜑 → (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg
𝐹) ∈ 𝐵)) |
58 | | gsumzcl2.w |
. . 3
⊢ (𝜑 → (𝐹 supp 0 ) ∈
Fin) |
59 | | fz1f1o 15350 |
. . 3
⊢ ((𝐹 supp 0 ) ∈ Fin →
((𝐹 supp 0 ) = ∅ ∨
((♯‘(𝐹 supp
0 ))
∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))) |
60 | 58, 59 | syl 17 |
. 2
⊢ (𝜑 → ((𝐹 supp 0 ) = ∅ ∨
((♯‘(𝐹 supp
0 ))
∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))) |
61 | 19, 57, 60 | mpjaod 856 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |