MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzcl2 Structured version   Visualization version   GIF version

Theorem gsumzcl2 19772
Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl 19773, because it is not required that 𝐹 is a function (actually, the hypothesis always holds for any proper class 𝐹). (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐡 = (Baseβ€˜πΊ)
gsumzcl.0 0 = (0gβ€˜πΊ)
gsumzcl.z 𝑍 = (Cntzβ€˜πΊ)
gsumzcl.g (πœ‘ β†’ 𝐺 ∈ Mnd)
gsumzcl.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
gsumzcl.f (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
gsumzcl.c (πœ‘ β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
gsumzcl2.w (πœ‘ β†’ (𝐹 supp 0 ) ∈ Fin)
Assertion
Ref Expression
gsumzcl2 (πœ‘ β†’ (𝐺 Ξ£g 𝐹) ∈ 𝐡)

Proof of Theorem gsumzcl2
Dummy variables 𝑓 π‘˜ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.f . . . . . . 7 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
2 gsumzcl.a . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ 𝑉)
3 gsumzcl.0 . . . . . . . . 9 0 = (0gβ€˜πΊ)
43fvexi 6902 . . . . . . . 8 0 ∈ V
54a1i 11 . . . . . . 7 (πœ‘ β†’ 0 ∈ V)
6 ssidd 4004 . . . . . . 7 (πœ‘ β†’ (𝐹 supp 0 ) βŠ† (𝐹 supp 0 ))
71, 2, 5, 6gsumcllem 19770 . . . . . 6 ((πœ‘ ∧ (𝐹 supp 0 ) = βˆ…) β†’ 𝐹 = (π‘˜ ∈ 𝐴 ↦ 0 ))
87oveq2d 7421 . . . . 5 ((πœ‘ ∧ (𝐹 supp 0 ) = βˆ…) β†’ (𝐺 Ξ£g 𝐹) = (𝐺 Ξ£g (π‘˜ ∈ 𝐴 ↦ 0 )))
9 gsumzcl.g . . . . . . 7 (πœ‘ β†’ 𝐺 ∈ Mnd)
103gsumz 18713 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) β†’ (𝐺 Ξ£g (π‘˜ ∈ 𝐴 ↦ 0 )) = 0 )
119, 2, 10syl2anc 584 . . . . . 6 (πœ‘ β†’ (𝐺 Ξ£g (π‘˜ ∈ 𝐴 ↦ 0 )) = 0 )
1211adantr 481 . . . . 5 ((πœ‘ ∧ (𝐹 supp 0 ) = βˆ…) β†’ (𝐺 Ξ£g (π‘˜ ∈ 𝐴 ↦ 0 )) = 0 )
138, 12eqtrd 2772 . . . 4 ((πœ‘ ∧ (𝐹 supp 0 ) = βˆ…) β†’ (𝐺 Ξ£g 𝐹) = 0 )
14 gsumzcl.b . . . . . . 7 𝐡 = (Baseβ€˜πΊ)
1514, 3mndidcl 18636 . . . . . 6 (𝐺 ∈ Mnd β†’ 0 ∈ 𝐡)
169, 15syl 17 . . . . 5 (πœ‘ β†’ 0 ∈ 𝐡)
1716adantr 481 . . . 4 ((πœ‘ ∧ (𝐹 supp 0 ) = βˆ…) β†’ 0 ∈ 𝐡)
1813, 17eqeltrd 2833 . . 3 ((πœ‘ ∧ (𝐹 supp 0 ) = βˆ…) β†’ (𝐺 Ξ£g 𝐹) ∈ 𝐡)
1918ex 413 . 2 (πœ‘ β†’ ((𝐹 supp 0 ) = βˆ… β†’ (𝐺 Ξ£g 𝐹) ∈ 𝐡))
20 eqid 2732 . . . . . . 7 (+gβ€˜πΊ) = (+gβ€˜πΊ)
21 gsumzcl.z . . . . . . 7 𝑍 = (Cntzβ€˜πΊ)
229adantr 481 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ 𝐺 ∈ Mnd)
232adantr 481 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ 𝐴 ∈ 𝑉)
241adantr 481 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ 𝐹:𝐴⟢𝐡)
25 gsumzcl.c . . . . . . . 8 (πœ‘ β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
2625adantr 481 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
27 simprl 769 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ (β™―β€˜(𝐹 supp 0 )) ∈ β„•)
28 f1of1 6829 . . . . . . . . 9 (𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ) β†’ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1β†’(𝐹 supp 0 ))
2928ad2antll 727 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1β†’(𝐹 supp 0 ))
30 suppssdm 8158 . . . . . . . . . 10 (𝐹 supp 0 ) βŠ† dom 𝐹
3130, 1fssdm 6734 . . . . . . . . 9 (πœ‘ β†’ (𝐹 supp 0 ) βŠ† 𝐴)
3231adantr 481 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ (𝐹 supp 0 ) βŠ† 𝐴)
33 f1ss 6790 . . . . . . . 8 ((𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1β†’(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) βŠ† 𝐴) β†’ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1→𝐴)
3429, 32, 33syl2anc 584 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1→𝐴)
35 ssid 4003 . . . . . . . 8 (𝐹 supp 0 ) βŠ† (𝐹 supp 0 )
36 f1ofo 6837 . . . . . . . . . 10 (𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ) β†’ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–ontoβ†’(𝐹 supp 0 ))
37 forn 6805 . . . . . . . . . 10 (𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–ontoβ†’(𝐹 supp 0 ) β†’ ran 𝑓 = (𝐹 supp 0 ))
3836, 37syl 17 . . . . . . . . 9 (𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ) β†’ ran 𝑓 = (𝐹 supp 0 ))
3938ad2antll 727 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ ran 𝑓 = (𝐹 supp 0 ))
4035, 39sseqtrrid 4034 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ (𝐹 supp 0 ) βŠ† ran 𝑓)
41 eqid 2732 . . . . . . 7 ((𝐹 ∘ 𝑓) supp 0 ) = ((𝐹 ∘ 𝑓) supp 0 )
4214, 3, 20, 21, 22, 23, 24, 26, 27, 34, 40, 41gsumval3 19769 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ (𝐺 Ξ£g 𝐹) = (seq1((+gβ€˜πΊ), (𝐹 ∘ 𝑓))β€˜(β™―β€˜(𝐹 supp 0 ))))
43 nnuz 12861 . . . . . . . 8 β„• = (β„€β‰₯β€˜1)
4427, 43eleqtrdi 2843 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ (β™―β€˜(𝐹 supp 0 )) ∈ (β„€β‰₯β€˜1))
45 f1f 6784 . . . . . . . . . 10 (𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1→𝐴 β†’ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))⟢𝐴)
4634, 45syl 17 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))⟢𝐴)
47 fco 6738 . . . . . . . . 9 ((𝐹:𝐴⟢𝐡 ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))⟢𝐴) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜(𝐹 supp 0 )))⟢𝐡)
4824, 46, 47syl2anc 584 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜(𝐹 supp 0 )))⟢𝐡)
4948ffvelcdmda 7083 . . . . . . 7 (((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) ∧ π‘˜ ∈ (1...(β™―β€˜(𝐹 supp 0 )))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘˜) ∈ 𝐡)
5014, 20mndcl 18629 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ π‘˜ ∈ 𝐡 ∧ π‘₯ ∈ 𝐡) β†’ (π‘˜(+gβ€˜πΊ)π‘₯) ∈ 𝐡)
51503expb 1120 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (π‘˜ ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ (π‘˜(+gβ€˜πΊ)π‘₯) ∈ 𝐡)
5222, 51sylan 580 . . . . . . 7 (((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) ∧ (π‘˜ ∈ 𝐡 ∧ π‘₯ ∈ 𝐡)) β†’ (π‘˜(+gβ€˜πΊ)π‘₯) ∈ 𝐡)
5344, 49, 52seqcl 13984 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ (seq1((+gβ€˜πΊ), (𝐹 ∘ 𝑓))β€˜(β™―β€˜(𝐹 supp 0 ))) ∈ 𝐡)
5442, 53eqeltrd 2833 . . . . 5 ((πœ‘ ∧ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))) β†’ (𝐺 Ξ£g 𝐹) ∈ 𝐡)
5554expr 457 . . . 4 ((πœ‘ ∧ (β™―β€˜(𝐹 supp 0 )) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ) β†’ (𝐺 Ξ£g 𝐹) ∈ 𝐡))
5655exlimdv 1936 . . 3 ((πœ‘ ∧ (β™―β€˜(𝐹 supp 0 )) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ) β†’ (𝐺 Ξ£g 𝐹) ∈ 𝐡))
5756expimpd 454 . 2 (πœ‘ β†’ (((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 )) β†’ (𝐺 Ξ£g 𝐹) ∈ 𝐡))
58 gsumzcl2.w . . 3 (πœ‘ β†’ (𝐹 supp 0 ) ∈ Fin)
59 fz1f1o 15652 . . 3 ((𝐹 supp 0 ) ∈ Fin β†’ ((𝐹 supp 0 ) = βˆ… ∨ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))))
6058, 59syl 17 . 2 (πœ‘ β†’ ((𝐹 supp 0 ) = βˆ… ∨ ((β™―β€˜(𝐹 supp 0 )) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜(𝐹 supp 0 )))–1-1-ontoβ†’(𝐹 supp 0 ))))
6119, 57, 60mpjaod 858 1 (πœ‘ β†’ (𝐺 Ξ£g 𝐹) ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∨ wo 845   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  Vcvv 3474   βŠ† wss 3947  βˆ…c0 4321   ↦ cmpt 5230  ran crn 5676   ∘ ccom 5679  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€“ontoβ†’wfo 6538  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405   supp csupp 8142  Fincfn 8935  1c1 11107  β„•cn 12208  β„€β‰₯cuz 12818  ...cfz 13480  seqcseq 13962  β™―chash 14286  Basecbs 17140  +gcplusg 17193  0gc0g 17381   Ξ£g cgsu 17382  Mndcmnd 18621  Cntzccntz 19173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-cntz 19175
This theorem is referenced by:  gsumzcl  19773  gsumcl2  19776
  Copyright terms: Public domain W3C validator