| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvne0f1 | Structured version Visualization version GIF version | ||
| Description: A function on a closed interval with nonzero derivative is one-to-one. (Contributed by Mario Carneiro, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvne0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dvne0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dvne0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvne0.d | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| dvne0.z | ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹)) |
| Ref | Expression |
|---|---|
| dvne0f1 | ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)–1-1→ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvne0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | dvne0.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | dvne0.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 4 | dvne0.d | . . . 4 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
| 5 | dvne0.z | . . . 4 ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹)) | |
| 6 | 1, 2, 3, 4, 5 | dvne0 25943 | . . 3 ⊢ (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))) |
| 7 | isof1o 7257 | . . . 4 ⊢ (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) → 𝐹:(𝐴[,]𝐵)–1-1-onto→ran 𝐹) | |
| 8 | isof1o 7257 | . . . 4 ⊢ (𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹) → 𝐹:(𝐴[,]𝐵)–1-1-onto→ran 𝐹) | |
| 9 | 7, 8 | jaoi 857 | . . 3 ⊢ ((𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) → 𝐹:(𝐴[,]𝐵)–1-1-onto→ran 𝐹) |
| 10 | f1of1 6762 | . . 3 ⊢ (𝐹:(𝐴[,]𝐵)–1-1-onto→ran 𝐹 → 𝐹:(𝐴[,]𝐵)–1-1→ran 𝐹) | |
| 11 | 6, 9, 10 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)–1-1→ran 𝐹) |
| 12 | cncff 24813 | . . 3 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
| 13 | frn 6658 | . . 3 ⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → ran 𝐹 ⊆ ℝ) | |
| 14 | 3, 12, 13 | 3syl 18 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 15 | f1ss 6724 | . 2 ⊢ ((𝐹:(𝐴[,]𝐵)–1-1→ran 𝐹 ∧ ran 𝐹 ⊆ ℝ) → 𝐹:(𝐴[,]𝐵)–1-1→ℝ) | |
| 16 | 11, 14, 15 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)–1-1→ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ◡ccnv 5613 dom cdm 5614 ran crn 5615 ⟶wf 6477 –1-1→wf1 6478 –1-1-onto→wf1o 6480 Isom wiso 6482 (class class class)co 7346 ℝcr 11005 0cc0 11006 < clt 11146 (,)cioo 13245 [,]cicc 13248 –cn→ccncf 24796 D cdv 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-cmp 23302 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |