![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvne0f1 | Structured version Visualization version GIF version |
Description: A function on a closed interval with nonzero derivative is one-to-one. (Contributed by Mario Carneiro, 19-Feb-2015.) |
Ref | Expression |
---|---|
dvne0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvne0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvne0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
dvne0.d | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
dvne0.z | ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹)) |
Ref | Expression |
---|---|
dvne0f1 | ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)–1-1→ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvne0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | dvne0.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | dvne0.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
4 | dvne0.d | . . . 4 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
5 | dvne0.z | . . . 4 ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹)) | |
6 | 1, 2, 3, 4, 5 | dvne0 26076 | . . 3 ⊢ (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))) |
7 | isof1o 7350 | . . . 4 ⊢ (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) → 𝐹:(𝐴[,]𝐵)–1-1-onto→ran 𝐹) | |
8 | isof1o 7350 | . . . 4 ⊢ (𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹) → 𝐹:(𝐴[,]𝐵)–1-1-onto→ran 𝐹) | |
9 | 7, 8 | jaoi 858 | . . 3 ⊢ ((𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) → 𝐹:(𝐴[,]𝐵)–1-1-onto→ran 𝐹) |
10 | f1of1 6855 | . . 3 ⊢ (𝐹:(𝐴[,]𝐵)–1-1-onto→ran 𝐹 → 𝐹:(𝐴[,]𝐵)–1-1→ran 𝐹) | |
11 | 6, 9, 10 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)–1-1→ran 𝐹) |
12 | cncff 24944 | . . 3 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
13 | frn 6751 | . . 3 ⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → ran 𝐹 ⊆ ℝ) | |
14 | 3, 12, 13 | 3syl 18 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
15 | f1ss 6817 | . 2 ⊢ ((𝐹:(𝐴[,]𝐵)–1-1→ran 𝐹 ∧ ran 𝐹 ⊆ ℝ) → 𝐹:(𝐴[,]𝐵)–1-1→ℝ) | |
16 | 11, 14, 15 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)–1-1→ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 ◡ccnv 5692 dom cdm 5693 ran crn 5694 ⟶wf 6565 –1-1→wf1 6566 –1-1-onto→wf1o 6568 Isom wiso 6570 (class class class)co 7438 ℝcr 11161 0cc0 11162 < clt 11302 (,)cioo 13393 [,]cicc 13396 –cn→ccncf 24927 D cdv 25924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 ax-addf 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-pm 8877 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-fi 9458 df-sup 9489 df-inf 9490 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-q 12998 df-rp 13042 df-xneg 13161 df-xadd 13162 df-xmul 13163 df-ioo 13397 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-hom 17331 df-cco 17332 df-rest 17478 df-topn 17479 df-0g 17497 df-gsum 17498 df-topgen 17499 df-pt 17500 df-prds 17503 df-xrs 17558 df-qtop 17563 df-imas 17564 df-xps 17566 df-mre 17640 df-mrc 17641 df-acs 17643 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21383 df-xmet 21384 df-met 21385 df-bl 21386 df-mopn 21387 df-fbas 21388 df-fg 21389 df-cnfld 21392 df-top 22925 df-topon 22942 df-topsp 22964 df-bases 22978 df-cld 23052 df-ntr 23053 df-cls 23054 df-nei 23131 df-lp 23169 df-perf 23170 df-cn 23260 df-cnp 23261 df-haus 23348 df-cmp 23420 df-tx 23595 df-hmeo 23788 df-fil 23879 df-fm 23971 df-flim 23972 df-flf 23973 df-xms 24355 df-ms 24356 df-tms 24357 df-cncf 24929 df-limc 25927 df-dv 25928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |