MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdomfi Structured version   Visualization version   GIF version

Theorem ssdomfi 9146
Description: A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8943). (Contributed by BTernaryTau, 12-Nov-2024.)
Assertion
Ref Expression
ssdomfi (𝐵 ∈ Fin → (𝐴𝐵𝐴𝐵))

Proof of Theorem ssdomfi
StepHypRef Expression
1 f1oi 6823 . . . . 5 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1of1 6784 . . . . 5 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴1-1𝐴)
31, 2ax-mp 5 . . . 4 ( I ↾ 𝐴):𝐴1-1𝐴
4 f1ss 6745 . . . 4 ((( I ↾ 𝐴):𝐴1-1𝐴𝐴𝐵) → ( I ↾ 𝐴):𝐴1-1𝐵)
53, 4mpan 689 . . 3 (𝐴𝐵 → ( I ↾ 𝐴):𝐴1-1𝐵)
6 f1domfi 9131 . . 3 ((𝐵 ∈ Fin ∧ ( I ↾ 𝐴):𝐴1-1𝐵) → 𝐴𝐵)
75, 6sylan2 594 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
87ex 414 1 (𝐵 ∈ Fin → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3911   class class class wbr 5106   I cid 5531  cres 5636  1-1wf1 6494  1-1-ontowf1o 6496  cdom 8884  Fincfn 8886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-om 7804  df-1o 8413  df-en 8887  df-dom 8888  df-fin 8890
This theorem is referenced by:  php  9157  php2  9158
  Copyright terms: Public domain W3C validator