MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdomfi Structured version   Visualization version   GIF version

Theorem ssdomfi 9215
Description: A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg 9019). (Contributed by BTernaryTau, 12-Nov-2024.)
Assertion
Ref Expression
ssdomfi (𝐵 ∈ Fin → (𝐴𝐵𝐴𝐵))

Proof of Theorem ssdomfi
StepHypRef Expression
1 f1oi 6861 . . . . 5 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1of1 6822 . . . . 5 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴1-1𝐴)
31, 2ax-mp 5 . . . 4 ( I ↾ 𝐴):𝐴1-1𝐴
4 f1ss 6784 . . . 4 ((( I ↾ 𝐴):𝐴1-1𝐴𝐴𝐵) → ( I ↾ 𝐴):𝐴1-1𝐵)
53, 4mpan 690 . . 3 (𝐴𝐵 → ( I ↾ 𝐴):𝐴1-1𝐵)
6 f1domfi 9200 . . 3 ((𝐵 ∈ Fin ∧ ( I ↾ 𝐴):𝐴1-1𝐵) → 𝐴𝐵)
75, 6sylan2 593 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
87ex 412 1 (𝐵 ∈ Fin → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3931   class class class wbr 5124   I cid 5552  cres 5661  1-1wf1 6533  1-1-ontowf1o 6535  cdom 8962  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-en 8965  df-dom 8966  df-fin 8968
This theorem is referenced by:  php  9226  php2  9227  fodomfi  9327  imadomfi  42020
  Copyright terms: Public domain W3C validator